版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第01講導(dǎo)數(shù)的概念及其意義、導(dǎo)數(shù)的運算目錄TOC\o"1-2"\h\z\u模擬基礎(chǔ)練 2題型一:導(dǎo)數(shù)的定義及變化率問題 2題型二:導(dǎo)數(shù)的運算 2題型三:在點P處的切線 6題型四:過點P的切線 7題型五:公切線問題 9題型六:已知切線或切點求參數(shù)問題 12題型七:切線的條數(shù)問題 14題型八:利用導(dǎo)數(shù)的幾何意義求最值問題 16題型九:牛頓迭代法 19題型十:切線平行、垂直、重合問題 21題型十一:奇偶函數(shù)圖像的切線斜率問題 26題型十二:切線斜率的取值范圍問題 27重難創(chuàng)新練 29真題實戰(zhàn)練 39題型一:導(dǎo)數(shù)的定義及變化率問題1.設(shè)SKIPIF1<0是定義在R上的可導(dǎo)函數(shù),若SKIPIF1<0(SKIPIF1<0為常數(shù)),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0SKIPIF1<0.故選:C.2.對于函數(shù)SKIPIF1<0,若SKIPIF1<0存在,求:(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0題型二:導(dǎo)數(shù)的運算3.求下列函數(shù)的導(dǎo)數(shù):(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0(5)SKIPIF1<0(6)SKIPIF1<0【解析】(1)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.(3)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.(4)因為SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.(5)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.(6)因為SKIPIF1<0,所以SKIPIF1<0.4.求下列函數(shù)的導(dǎo)數(shù):(1)SKIPIF1<0;
(2)SKIPIF1<0.
(3)SKIPIF1<0;(4)SKIPIF1<0;
(5)y=SKIPIF1<0.
(6)SKIPIF1<0;(7)SKIPIF1<0;
(8)SKIPIF1<0;
(9)y=SKIPIF1<0.(10)SKIPIF1<0
(11)SKIPIF1<0
(12)SKIPIF1<0.【解析】(1)因為SKIPIF1<0,所以SKIPIF1<0;(2)因為SKIPIF1<0,所以SKIPIF1<0;(3)因為SKIPIF1<0,所以SKIPIF1<0;(4)因為SKIPIF1<0,所以SKIPIF1<0;(5)因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0;(6)因為SKIPIF1<0,所以SKIPIF1<0;(7)因為SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0;(8)因為SKIPIF1<0,所以SKIPIF1<0;(9)因為SKIPIF1<0,所以y′=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0;(10)因為SKIPIF1<0,所以SKIPIF1<0;(11)因為SKIPIF1<0,所以SKIPIF1<0;(12)因為SKIPIF1<0,所以SKIPIF1<0.5.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的值為.【答案】SKIPIF1<0【解析】由題意知:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.6.(2024·河南·一模)已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的極值點為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】對SKIPIF1<0進行求導(dǎo),可得SKIPIF1<0,將SKIPIF1<0代入整理,SKIPIF1<0①將SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,將其代入①,解得:SKIPIF1<0,故得SKIPIF1<0.于是SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,因SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0是函數(shù)SKIPIF1<0的極小值點,函數(shù)沒有極大值.故選:D.題型三:在點P處的切線7.曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為:SKIPIF1<0,即SKIPIF1<0,故選:C.8.(2024·黑龍江·二模)函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以切點為SKIPIF1<0,切線的斜率為SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.故選:D9.(2024·全國·模擬預(yù)測)函數(shù)SKIPIF1<0的圖象在點SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則所求切線方程為SKIPIF1<0,即SKIPIF1<0.故選:B.10.下列函數(shù)的圖象與直線SKIPIF1<0相切于點SKIPIF1<0的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】A.SKIPIF1<0,在SKIPIF1<0的切線斜率為0,不符合;B.SKIPIF1<0在SKIPIF1<0的切線斜率為1,所以切線為SKIPIF1<0,成立;C.D.兩個函數(shù)均不經(jīng)過SKIPIF1<0,不符合.故選:B.題型四:過點P的切線11.過原點的直線SKIPIF1<0與SKIPIF1<0相切,則切點的坐標(biāo)是.【答案】SKIPIF1<0【解析】由題意設(shè)切點坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,故直線SKIPIF1<0的斜率為SKIPIF1<0,則直線l的方程為SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,則切點的坐標(biāo)為SKIPIF1<0,故答案為:SKIPIF1<012.已知直線SKIPIF1<0為曲線SKIPIF1<0過點SKIPIF1<0的切線.則直線SKIPIF1<0的方程為.【答案】SKIPIF1<0或SKIPIF1<0【解析】∵SKIPIF1<0,∴SKIPIF1<0.
設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0,∴過點SKIPIF1<0的切線方程為SKIPIF1<0,即SKIPIF1<0,又點SKIPIF1<0在切線上,∴SKIPIF1<0,整理得SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;∴所求的切線方程為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.13.已知函數(shù)SKIPIF1<0,過點SKIPIF1<0作曲線SKIPIF1<0的切線,則其切線方程為.【答案】SKIPIF1<0【解析】設(shè)切點為SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以切線方程為SKIPIF1<0,又切線過點SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<014.在平面直角坐標(biāo)系SKIPIF1<0中,點SKIPIF1<0在曲線SKIPIF1<0上,且該曲線在點SKIPIF1<0處的切線經(jīng)過點SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),則點SKIPIF1<0的坐標(biāo)是,切線方程為【答案】SKIPIF1<0SKIPIF1<0【解析】設(shè)點SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,曲線SKIPIF1<0在點A處的切線方程為SKIPIF1<0,即SKIPIF1<0,代入點SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,記SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,注意到SKIPIF1<0,故SKIPIF1<0存在唯一的實數(shù)根SKIPIF1<0,此時SKIPIF1<0,故點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,切線方程為SKIPIF1<0,故答案為:SKIPIF1<0,SKIPIF1<0題型五:公切線問題15.經(jīng)過曲線SKIPIF1<0與SKIPIF1<0的公共點,且與曲線SKIPIF1<0和SKIPIF1<0的公切線SKIPIF1<0垂直的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0,消去SKIPIF1<0整理得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以方程組SKIPIF1<0的解為SKIPIF1<0,即曲線SKIPIF1<0與SKIPIF1<0的公共點的坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0和SKIPIF1<0分別相切于SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即公切線SKIPIF1<0的斜率為SKIPIF1<0,故與SKIPIF1<0垂直的直線的斜率為SKIPIF1<0,所以所求直線方程為SKIPIF1<0,整理得SKIPIF1<0.故選:B.16.已知直線SKIPIF1<0是曲線SKIPIF1<0與曲線SKIPIF1<0的公切線,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意知直線SKIPIF1<0是曲線SKIPIF1<0與曲線SKIPIF1<0的公切線,設(shè)SKIPIF1<0是SKIPIF1<0圖象上的切點,SKIPIF1<0,所以SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0①令SKIPIF1<0,解得SKIPIF1<0,即直線SKIPIF1<0與曲線SKIPIF1<0的切點為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,①為SKIPIF1<0,不符合題意,舍去,所以SKIPIF1<0,此時①可化為SKIPIF1<0,所以SKIPIF1<0,故選:A17.過原點的直線SKIPIF1<0與曲線SKIPIF1<0都相切,則實數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,設(shè)過原點的直線SKIPIF1<0分別與曲線SKIPIF1<0相切于點SKIPIF1<0,則由導(dǎo)數(shù)的幾何意義得SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0,所以直線SKIPIF1<0的斜率為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0.故選:D18.若曲線SKIPIF1<0與曲線SKIPIF1<0有公切線,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)公切線與函數(shù)SKIPIF1<0切于點SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以公切線的斜率為SKIPIF1<0,所以公切線方程為SKIPIF1<0,化簡得SKIPIF1<0,設(shè)公切線與函數(shù)SKIPIF1<0切于點SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則公切線的斜率為SKIPIF1<0,所以公切線方程為SKIPIF1<0,化簡得SKIPIF1<0,所以SKIPIF1<0,消去SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0,所以由題意得SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A19.已知曲線SKIPIF1<0在點SKIPIF1<0處的切線與曲線SKIPIF1<0在點SKIPIF1<0處的切線相同,則SKIPIF1<0(
)A.-1 B.-2 C.1 D.2【答案】B【解析】根據(jù)常用函數(shù)的導(dǎo)數(shù)可知:SKIPIF1<0,SKIPIF1<0,則兩函數(shù)在點SKIPIF1<0和SKIPIF1<0處的切線分別為:SKIPIF1<0,化簡得SKIPIF1<0由題意可得:SKIPIF1<0,化簡得SKIPIF1<0.故選:B20.設(shè)曲線SKIPIF1<0和曲線SKIPIF1<0在它們的公共點SKIPIF1<0處有相同的切線,則SKIPIF1<0的值為(
)A.0 B.SKIPIF1<0 C.2 D.3【答案】C【解析】由已知得SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.題型六:已知切線或切點求參數(shù)問題21.(2024·山東臨沂·二模)若直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,設(shè)切點為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0又因為SKIPIF1<0在SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.當(dāng)SKIPIF1<0趨近正無窮時,SKIPIF1<0趨近正無窮.所以SKIPIF1<0的取值范圍為:SKIPIF1<0.故答案為:SKIPIF1<0.22.(2024·高三·云南楚雄·期末)若直線SKIPIF1<0與曲線SKIPIF1<0相切,則切點的橫坐標(biāo)為.【答案】SKIPIF1<0【解析】由SKIPIF1<0求導(dǎo)得SKIPIF1<0,直線SKIPIF1<0斜率為SKIPIF1<0,代入導(dǎo)函數(shù)有:SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<023.(2024·湖北·二模)SKIPIF1<0是SKIPIF1<0在SKIPIF1<0處的切線方程,則SKIPIF1<0.【答案】SKIPIF1<0【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則方程為SKIPIF1<0,將SKIPIF1<0代入方程,得SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<024.(2024·高三·安徽亳州·期末)已知直線SKIPIF1<0的斜率為2,且與曲線SKIPIF1<0相切,則SKIPIF1<0的方程為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則切點為SKIPIF1<0,故所求SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0.25.(2024·全國·模擬預(yù)測)若直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象相切,則SKIPIF1<0的最小值為(
)A.e B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0可得SKIPIF1<0,設(shè)切點為SKIPIF1<0,則切線方程為SKIPIF1<0,即SKIPIF1<0依題意,SKIPIF1<0,故SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0的極小值為SKIPIF1<0,也是最小值,即SKIPIF1<0的最小值為SKIPIF1<0.故選:C.26.(2024·四川綿陽·一模)設(shè)函數(shù)SKIPIF1<0,直線SKIPIF1<0是曲線SKIPIF1<0的切線,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】令SKIPIF1<0的切點為SKIPIF1<0,因為SKIPIF1<0,所以過切點的切線方程為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0恒成立,此時SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時SKIPIF1<0恒成立,此時SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故選:C題型七:切線的條數(shù)問題27.若過點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)切點為SKIPIF1<0,由題得:SKIPIF1<0,故切線斜率為SKIPIF1<0,切線方程為:SKIPIF1<0,因切線經(jīng)過點SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0有兩個不同得實數(shù)根.不妨設(shè)SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.故SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故選:D.28.(2024·全國·模擬預(yù)測)過坐標(biāo)原點作曲線SKIPIF1<0的切線,則切線共有(
)A.1條 B.2條 C.3條 D.4條【答案】A【解析】設(shè)切點為SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,則過坐標(biāo)原點的切線的斜率SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故過坐標(biāo)原點的切線共有1條.故選:A.29.已知函數(shù)SKIPIF1<0,若過SKIPIF1<0可做兩條直線與函數(shù)SKIPIF1<0的圖象相切,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)過點SKIPIF1<0的直線與函數(shù)SKIPIF1<0的圖象相切時的切點為SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以切線方程為SKIPIF1<0,又SKIPIF1<0在切線上,所以SKIPIF1<0,整理得SKIPIF1<0,則過點SKIPIF1<0的直線與函數(shù)SKIPIF1<0的圖象相切的切線條數(shù)即為直線SKIPIF1<0與曲線SKIPIF1<0的圖象的公共點的個數(shù),因為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,因為SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象大致如圖:所以當(dāng)SKIPIF1<0時,圖像有兩個交點,切線有兩條.故選:B.30.(2024·寧夏銀川·二模)已知點SKIPIF1<0不在函數(shù)SKIPIF1<0的圖象上,且過點SKIPIF1<0僅有一條直線與SKIPIF1<0的圖象相切,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】點SKIPIF1<0不在函數(shù)SKIPIF1<0的圖象上,則SKIPIF1<0,即SKIPIF1<0,設(shè)過點SKIPIF1<0的直線與SKIPIF1<0的圖象相切于SKIPIF1<0,則切線的斜率SKIPIF1<0,整理可得SKIPIF1<0,則問題可轉(zhuǎn)化為SKIPIF1<0只有一個零點,且SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,即當(dāng)SKIPIF1<0時,SKIPIF1<0有極大值,當(dāng)SKIPIF1<0時,SKIPIF1<0有極小值,要使SKIPIF1<0僅有一個零點,SKIPIF1<0或SKIPIF1<0故選:B題型八:利用導(dǎo)數(shù)的幾何意義求最值問題31.(2024·陜西西安·二模)若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.6 C.8 D.12【答案】C【解析】由題意,設(shè)函數(shù)SKIPIF1<0,直線SKIPIF1<0,設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0的切點為SKIPIF1<0可得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,即切點坐標(biāo)為SKIPIF1<0,則切點到直線SKIPIF1<0的距離為SKIPIF1<0,又因為SKIPIF1<0表示點SKIPIF1<0到直線SKIPIF1<0的距離為平方,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.32.(2024·廣東·一模)設(shè)點SKIPIF1<0在曲線SKIPIF1<0上,點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,得SKIPIF1<0,代入曲線SKIPIF1<0,所以SKIPIF1<0的最小值即為點SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0.故選:B.33.已知點P是曲線SKIPIF1<0上任意一點,點Q是直線SKIPIF1<0上任一點,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【解析】函數(shù)SKIPIF1<0的定義域為全體正實數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,函數(shù)圖象如下圖:過點SKIPIF1<0的曲線SKIPIF1<0的切線與直線SKIPIF1<0平行時,SKIPIF1<0最小,即有SKIPIF1<0,所以SKIPIF1<0,故選:A34.(2024·高三·四川成都·期末)已知SKIPIF1<0為函數(shù)SKIPIF1<0圖象上一動點,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】A【解題思路】先觀察出函數(shù)關(guān)于SKIPIF1<0對稱,在根據(jù)所求的式子可以判斷SKIPIF1<0時比SKIPIF1<0的值要大,所以只需研究SKIPIF1<0的情況即可,把所求的式子經(jīng)過換元,適當(dāng)?shù)淖冃无D(zhuǎn)化為復(fù)合函數(shù)問題,其中一個內(nèi)層函數(shù)又是兩點斜率問題,借助數(shù)形結(jié)合思想和導(dǎo)數(shù)的幾何意義即可求出最值.【解析】由函數(shù)解析式可知函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,設(shè)SKIPIF1<0,不妨設(shè)SKIPIF1<0則SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,即當(dāng)SKIPIF1<0時SKIPIF1<0的值要大于SKIPIF1<0時SKIPIF1<0的值,所以只需研究SKIPIF1<0的情況即可,
當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0時,SKIPIF1<0遞增,當(dāng)SKIPIF1<0,SKIPIF1<0遞減.SKIPIF1<0,所以SKIPIF1<0的幾何意義是函數(shù)SKIPIF1<0上一點與點SKIPIF1<0的斜率,設(shè)過點SKIPIF1<0的切線與函數(shù)SKIPIF1<0的交點坐標(biāo)(即切點)為SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以切線的斜率SKIPIF1<0,切線方程為SKIPIF1<0,把點SKIPIF1<0代入切線方程整理得:SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0不合題意,所以SKIPIF1<0,此時切線的斜率SKIPIF1<0,如圖:
根據(jù)數(shù)形結(jié)合思想可知SKIPIF1<0的范圍為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0最大,此時SKIPIF1<0.故選:A35.設(shè)點SKIPIF1<0在曲線SKIPIF1<0上,點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為(
)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0和SKIPIF1<0互為反函數(shù),問題可以轉(zhuǎn)化為直線SKIPIF1<0到SKIPIF1<0距離的兩倍.SKIPIF1<0令SKIPIF1<0得SKIPIF1<0故切點為SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0.故選:C.題型九:牛頓迭代法36.英國著名物理學(xué)家牛頓用“作切線”的方法求函數(shù)零點.已知二次函數(shù)SKIPIF1<0有兩個不相等的實根SKIPIF1<0,其中SKIPIF1<0.在函數(shù)SKIPIF1<0圖像上橫坐標(biāo)為SKIPIF1<0的點處作曲線SKIPIF1<0的切線,切線與x軸交點的橫坐標(biāo)為SKIPIF1<0;用SKIPIF1<0代替SKIPIF1<0,重復(fù)以上的過程得到SKIPIF1<0;一直下去,得到數(shù)列SKIPIF1<0,記SKIPIF1<0,且SKIPIF1<0,下列說法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0是等差數(shù)列 D.?dāng)?shù)列SKIPIF1<0的前n項和SKIPIF1<0【答案】D【解析】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故A錯誤;因為二次函數(shù)SKIPIF1<0有兩個不等實數(shù)根SKIPIF1<0,所以不妨設(shè)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以在橫坐標(biāo)為SKIPIF1<0的點處的切線方程為:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是公比為2,首項為1的等比數(shù)列,所以SKIPIF1<0,且SKIPIF1<0,故BC錯誤;由SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:D37.人們很早以前就開始探索高次方程的數(shù)值求解問題.牛頓(1643—1727)給出了牛頓法——用“作切線”的方法求方程的近似解.如圖,方程SKIPIF1<0的根就是函數(shù)SKIPIF1<0的零點r,取初始值SKIPIF1<0處的切線與x軸的交點為SKIPIF1<0,SKIPIF1<0在SKIPIF1<0處的切線與x軸的交點為SKIPIF1<0,一直這樣下去,得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,它們越來越接近r.若SKIPIF1<0,SKIPIF1<0,則用牛頓法得到的r的近似值SKIPIF1<0約為(
)A.1.438 B.1.417 C.1.415 D.1.375【答案】B【解析】由題意,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線方程為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.故選:B.38.(2024·高三·四川成都·期中)科學(xué)家牛頓用“作切線”的方法求函數(shù)的零點時,給出了“牛頓數(shù)列”,其定義是:對于函數(shù)SKIPIF1<0,若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱數(shù)列SKIPIF1<0為牛頓數(shù)列,若函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0為牛頓數(shù)列且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值是(
)A.9 B.SKIPIF1<0 C.SKIPIF1<0 D.7【答案】C【解析】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為首項,SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:C.題型十:切線平行、垂直、重合問題39.(2024·河南·模擬預(yù)測)已知函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0兩點,且SKIPIF1<0的圖象在SKIPIF1<0處的切線互相垂直,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0,則SKIPIF1<0,構(gòu)建SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,當(dāng)SKIPIF1<0趨近于SKIPIF1<0時,SKIPIF1<0趨近于SKIPIF1<0,可知SKIPIF1<0的值域為SKIPIF1<0,由題意可知:存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.40.已知函數(shù)SKIPIF1<0的圖象在SKIPIF1<0兩個不同點處的切線相互平行,則SKIPIF1<0的取值可以為(
)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,依題意可得SKIPIF1<0且SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,經(jīng)驗證,當(dāng)SKIPIF1<0、SKIPIF1<0分別取SKIPIF1<0、SKIPIF1<0時SKIPIF1<0滿足題意.故選:D41.(2024·云南曲靖·一模)已知SKIPIF1<0,若點SKIPIF1<0為曲線SKIPIF1<0與曲線SKIPIF1<0的交點,且兩條曲線在點SKIPIF1<0處的切線重合,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,則由SKIPIF1<0可得SKIPIF1<0,又SKIPIF1<0可得SKIPIF1<0,且兩條曲線在點SKIPIF1<0處的切線重合,所以切線的斜率SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),即點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,由點SKIPIF1<0為曲線SKIPIF1<0與曲線SKIPIF1<0的交點,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0知,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版煤礦安全生產(chǎn)標(biāo)準(zhǔn)化體系全套制度匯編-附加各專業(yè)制度
- 深基坑監(jiān)測方案
- 煤氣泄漏事故應(yīng)急處理預(yù)案
- 三(1)班“陽光校園 空中黔課”工作總結(jié)
- 普法教育宣傳活動實施方案
- 校園突發(fā)暴力事件應(yīng)急預(yù)案
- 影視法律顧問服務(wù)方案
- 建筑工程鋼結(jié)構(gòu)模板施工方案
- 幼兒園幼兒管理工作總結(jié)
- 運營管理協(xié)議書
- 2022年縣綜合行政執(zhí)法局協(xié)管員知識考試題庫(含答案)
- 中等職業(yè)學(xué)校人才培養(yǎng)工作狀態(tài)數(shù)據(jù)采集與管理平臺數(shù)據(jù)結(jié)構(gòu)
- 新課標(biāo)人教版物理八年級上冊期中考試題(前三章-含答案)
- 特種設(shè)備安全管理人員、作業(yè)人員管理和培訓(xùn)制度
- 環(huán)境與資源保護法課件
- 部編版人教版二年級上冊語文侯春燕:《坐井觀天》課件
- 輸液港(Port)維護操作流程及考核評分標(biāo)準(zhǔn)
- 新蘇教版2022-2023五年級科學(xué)上冊第19課《我們的大腦》課件
- 湖北省黃石市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 主動脈球囊反搏術(shù)護理培訓(xùn)課件
- 供水管道穿越天然氣管道交叉施工方案
評論
0/150
提交評論