浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題含解析_第1頁
浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題含解析_第2頁
浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題含解析_第3頁
浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題含解析_第4頁
浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

浙江省寧波市第七中學2024-2025學年初三數(shù)學試題第7周測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.62.下面運算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|3.在中,,,,則的值是()A. B. C. D.4.人的大腦每天能記錄大約8600萬條信息,數(shù)據(jù)8600用科學記數(shù)法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1025.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大6.如圖,三角形紙片ABC,AB=10cm,BC=7cm,AC=6cm,沿過點B的直線折疊這個三角形,使頂點C落在AB邊上的點E處,折痕為BD,則△AED的周長為()A.9cm B.13cm C.16cm D.10cm7.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.8.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產(chǎn)生的能量.把130000000kg用科學記數(shù)法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg9.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米10.如圖是由5個相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結(jié)果保留)12.函數(shù)y=中自變量x的取值范圍是___________.13.分解因式:2a2﹣2=_____.14.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).15.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.16.如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,過CD延長線上一點E作⊙O的切線,切點為F.若∠ACF=65°,則∠E=.三、解答題(共8題,共72分)17.(8分)某水果批發(fā)市場香蕉的價格如下表購買香蕉數(shù)(千克)不超過20千克20千克以上但不超過40千克40千克以上每千克的價格6元5元4元張強兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強第一次,第二次分別購買香蕉多少千克?18.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:請你補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.19.(8分)解方程組20.(8分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數(shù)據(jù):≈1.73,≈1.41)21.(8分)問題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=______,連接OF;(3)在CD邊上取點G,使CG=______,連接OG;(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.22.(10分)為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?23.(12分)如圖,甲、乙用4張撲克牌玩游戲,他倆將撲克牌洗勻后背面朝上,放置在桌面上,每人抽一張,甲先抽,乙后抽,抽出的牌不放回.甲、乙約定:只有甲抽到的牌面數(shù)字比乙大時甲勝;否則乙勝.請你用樹狀圖或列表法說明甲、乙獲勝的機會是否相同.24.某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).2、D【解析】

分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項以及積的乘方運算、絕對值的性質(zhì)分別化簡求出答案.【詳解】解:A,,故此選項錯誤;B,,故此選項錯誤;C,,故此選項錯誤;D,,故此選項正確.所以D選項是正確的.靈活運用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項以及積的乘方運算、絕對值的性質(zhì)可以求出答案.3、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.4、C【解析】

科學記數(shù)法就是將一個數(shù)字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】數(shù)據(jù)8600用科學記數(shù)法表示為8.6×103故選C.用科學記數(shù)法表示一個數(shù)的方法是(1)確定a:a是只有一位整數(shù)的數(shù);(2)確定n:當原數(shù)的絕對值≥10時,n為正整數(shù),n等于原數(shù)的整數(shù)位數(shù)減1;當原數(shù)的絕對值<1時,n為負整數(shù),n的絕對值等于原數(shù)中左起第一個非零數(shù)前零的個數(shù)(含整數(shù)位數(shù)上的零).5、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.6、A【解析】試題分析:由折疊的性質(zhì)知,CD=DE,BC=BE.易求AE及△AED的周長.解:由折疊的性質(zhì)知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周長=AD+DE+AE=AC+AE=6+3=9(cm).故選A.點評:本題利用了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.7、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做對稱中心.8、D【解析】試題分析:科學計數(shù)法是指:a×,且,n為原數(shù)的整數(shù)位數(shù)減一.9、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).10、A【解析】

根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個小正方形,第二層左邊有1個小正方形.故選A.本題考查三視圖,解題的關鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎題型.二、填空題(本大題共6個小題,每小題3分,共18分)11、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.12、x≥﹣且x≠1【解析】

試題解析:根據(jù)題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.13、2(a+1)(a﹣1).【解析】

先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).15、2【解析】

如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=216、50°.【解析】

解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.三、解答題(共8題,共72分)17、第一次買14千克香蕉,第二次買36千克香蕉【解析】

本題兩個等量關系為:第一次買的千克數(shù)+第二次買的千克數(shù)=50;第一次出的錢數(shù)+第二次出的錢數(shù)=1.對張強買的香蕉的千克數(shù),應分情況討論:①當0<x≤20,y≤40;②當0<x≤20,y>40③當20<x<3時,則3<y<2.【詳解】設張強第一次購買香蕉xkg,第二次購買香蕉ykg,由題意可得0<x<3.則①當0<x≤20,y≤40,則題意可得.解得.②當0<x≤20,y>40時,由題意可得.解得.(不合題意,舍去)③當20<x<3時,則3<y<2,此時張強用去的款項為5x+5y=5(x+y)=5×50=30<1(不合題意,舍去);④當20<x≤40y>40時,總質(zhì)量將大于60kg,不符合題意,答:張強第一次購買香蕉14kg,第二次購買香蕉36kg.本題主要考查學生分類討論的思想.找到兩個基本的等量關系后,應根據(jù)討論的千克數(shù)找到相應的價格進行作答.18、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、【解析】解:由①得③把③代入②得把代人③得∴原方程組的解為20、3.05米【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結(jié)論.【詳解】解:如圖:延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.本題主要考查直角三角形和三角函數(shù),構(gòu)造合適的輔助線是本題解題的關鍵.21、(1)見解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】

利用菱形四條邊相等,分別在四邊上進行截取和連接,得出AE=EB+BF=FC+CG+GD+DH=HA,進一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.【詳解】(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=3,連接OF;(3)在CD邊上取點G,使CG=2,連接OG;(4)在DA邊上取點H,使DH=1,連接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.此題考查菱形的性質(zhì),熟練掌握菱形的四條邊相等,對角線互相垂直是解題的關鍵.22、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.【解析】

詳解:(1)設購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因為a是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論