湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省隨州曾都區(qū)市級(jí)名校2024年中考數(shù)學(xué)考試模擬沖刺卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在平面直角坐標(biāo)系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.2.如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm3.在數(shù)軸上到原點(diǎn)距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道4.如圖,將△ABC沿著點(diǎn)B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.485.通州區(qū)大運(yùn)河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1046.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.7.如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°8.2017年牡丹區(qū)政府工作報(bào)告指出:2012年以來牡丹區(qū)經(jīng)濟(jì)社會(huì)發(fā)展取得顯著成就,綜合實(shí)力明顯提升,地區(qū)生產(chǎn)總值由156.3億元增加到338億元,年均可比增長(zhǎng)11.4%,338億用科學(xué)記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10109.下列交通標(biāo)志是中心對(duì)稱圖形的為()A. B. C. D.10.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣311.甲、乙兩盒中分別放入編號(hào)為1、2、3、4的形狀相同的4個(gè)小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號(hào)數(shù)相加得到一個(gè)數(shù),則得到數(shù)()的概率最大.A.3 B.4 C.5 D.612.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=14.分解因式:2a2﹣2=_____.15.在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,∠AOB=60°,AC=6cm,則AB的長(zhǎng)是_____.16.規(guī)定一種新運(yùn)算“*”:a*b=a-b,則方程x*2=1*x的解為________.17.如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,∠CAB=60°,弦AD平分∠CAB,若AD=6,則AC=_____.18.分解因式:4a3b﹣ab=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在正方形中,點(diǎn)是對(duì)角線上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),連接過點(diǎn)作,交直線于點(diǎn).作交直線于點(diǎn),連接.(1)由題意易知,,觀察圖,請(qǐng)猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,請(qǐng)說明理由.20.(6分)我市某中學(xué)舉行“中國夢(mèng)?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.21.(6分)如圖1,在△ABC中,點(diǎn)P為邊AB所在直線上一點(diǎn),連結(jié)CP,M為線段CP的中點(diǎn),若滿足∠ACP=∠MBA,則稱點(diǎn)P為△ABC的“好點(diǎn)”.(1)如圖2,當(dāng)∠ABC=90°時(shí),命題“線段AB上不存在“好點(diǎn)”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長(zhǎng)線的一個(gè)“好點(diǎn)”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點(diǎn)P是△ABC的“好點(diǎn)”,若AC=4,AB=5,求AP的值.22.(8分)研究發(fā)現(xiàn),拋物線上的點(diǎn)到點(diǎn)F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點(diǎn)P是拋物線上任意一點(diǎn),PH⊥l于點(diǎn)H,則PF=PH.基于上述發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)M,記點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離之和的最小值為d,稱d為點(diǎn)M關(guān)于拋物線的關(guān)聯(lián)距離;當(dāng)時(shí),稱點(diǎn)M為拋物線的關(guān)聯(lián)點(diǎn).(1)在點(diǎn),,,中,拋物線的關(guān)聯(lián)點(diǎn)是_____;(2)如圖2,在矩形ABCD中,點(diǎn),點(diǎn),①若t=4,點(diǎn)M在矩形ABCD上,求點(diǎn)M關(guān)于拋物線的關(guān)聯(lián)距離d的取值范圍;②若矩形ABCD上的所有點(diǎn)都是拋物線的關(guān)聯(lián)點(diǎn),則t的取值范圍是________.23.(8分)某小學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時(shí)間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如下:補(bǔ)全條形統(tǒng)計(jì)圖;求扇形統(tǒng)計(jì)圖扇形D的圓心角的度數(shù);若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)其中有多少名學(xué)生能在1.5小時(shí)內(nèi)完成家庭作業(yè)?24.(10分)如圖,點(diǎn)D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.25.(10分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測(cè)得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時(shí),測(cè)得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號(hào)).26.(12分)已知點(diǎn)E為正方形ABCD的邊AD上一點(diǎn),連接BE,過點(diǎn)C作CN⊥BE,垂足為M,交AB于點(diǎn)N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點(diǎn),求tan∠ABE.27.(12分)如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣1x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)A作AB⊥x軸,垂足為點(diǎn)A,過點(diǎn)C作CB⊥y軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.(1)線段AB,BC,AC的長(zhǎng)分別為AB=,BC=,AC=;(1)折疊圖1中的△ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖1.請(qǐng)從下列A、B兩題中任選一題作答,我選擇題.A:①求線段AD的長(zhǎng);②在y軸上,是否存在點(diǎn)P,使得△APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.B:①求線段DE的長(zhǎng);②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)題目給出的二次函數(shù)的表達(dá)式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點(diǎn)睛】本題考查的是簡(jiǎn)單運(yùn)用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).2、B【解析】試題解析:∵菱形ABCD的對(duì)角線根據(jù)勾股定理,設(shè)菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.3、C【解析】

根據(jù)數(shù)軸上到原點(diǎn)距離等于3的數(shù)為絕對(duì)值是3的數(shù)即可求解.【詳解】絕對(duì)值為3的數(shù)有3,-3.故答案為C.【點(diǎn)睛】本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點(diǎn)到原點(diǎn)的距離為絕對(duì)值.4、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點(diǎn)睛】本題考查平移的性質(zhì),平移前后兩個(gè)圖形大小,形狀完全相同,圖形上的每個(gè)點(diǎn)都平移了相同的距離,對(duì)應(yīng)點(diǎn)之間的距離就是平移的距離.5、D【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:10700=1.07×104,

故選:D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、D【解析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點(diǎn)睛】本題考查了方差的知識(shí),說明了當(dāng)數(shù)據(jù)都加上一個(gè)數(shù)(或減去一個(gè)數(shù))時(shí),平均數(shù)也加或減這個(gè)數(shù),方差不變,即數(shù)據(jù)的波動(dòng)情況不變;當(dāng)數(shù)據(jù)都乘以一個(gè)數(shù)(或除以一個(gè)數(shù))時(shí),平均數(shù)也乘以或除以這個(gè)數(shù),方差變?yōu)檫@個(gè)數(shù)的平方倍.7、D【解析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進(jìn)行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對(duì)邊相互平行的四邊形是平行四邊形);過點(diǎn)分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對(duì)角相等),故正確;,(平行四邊形的對(duì)邊相等),故正確;如果四邊形是矩形時(shí),該等式成立.故不一定正確.故選:.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.8、D【解析】

根據(jù)科學(xué)記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點(diǎn)睛】把一個(gè)大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學(xué)記數(shù)法.9、C【解析】

根據(jù)中心對(duì)稱圖形的定義即可解答.【詳解】解:A、屬于軸對(duì)稱圖形,不是中心對(duì)稱的圖形,不合題意;

B、是中心對(duì)稱的圖形,但不是交通標(biāo)志,不符合題意;

C、屬于軸對(duì)稱圖形,屬于中心對(duì)稱的圖形,符合題意;

D、不是中心對(duì)稱的圖形,不合題意.

故選C.【點(diǎn)睛】本題考查中心對(duì)稱圖形的定義:繞對(duì)稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.10、C【解析】

根據(jù)不等式的性質(zhì)得出x的解集,進(jìn)而解答即可.【詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點(diǎn)睛】此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.11、C【解析】解:甲和乙盒中1個(gè)小球任意摸出一球編號(hào)為1、2、3、1的概率各為,其中得到的編號(hào)相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.12、D【解析】

試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點(diǎn)位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點(diǎn)A(―3,6)且相似比為,∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點(diǎn)A′′和點(diǎn)A′(-1,2)關(guān)于原點(diǎn)O對(duì)稱,∴A′′(1,―2).故答案選D.考點(diǎn):位似變換.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

連接AC,過點(diǎn)C作CE⊥AB的延長(zhǎng)線于點(diǎn)E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關(guān)系計(jì)算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點(diǎn)C作CE⊥AB的延長(zhǎng)線于點(diǎn)E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設(shè)BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點(diǎn)睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關(guān)鍵.14、2(a+1)(a﹣1).【解析】

先提取公因式2,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點(diǎn)睛】本題考查了提公因式法和公式法進(jìn)行因式分解,一個(gè)多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時(shí)因式分解要徹底,直到不能分解為止.15、3cm.【解析】

根據(jù)矩形的對(duì)角線相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判斷出△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求出AB即可.【詳解】解:∵四邊形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等邊三角形,∴AB=OA=3cm,故答案為:3cm【點(diǎn)睛】本題主要考查矩形的性質(zhì)和等邊三角形的判定和性質(zhì),解本題的關(guān)鍵是掌握矩形的對(duì)角線相等且互相平分.16、【解析】

根據(jù)題中的新定義化簡(jiǎn)所求方程,求出方程的解即可.【詳解】根據(jù)題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點(diǎn)睛】此題的關(guān)鍵是掌握新運(yùn)算規(guī)則,轉(zhuǎn)化成一元一元一次方程,再解這個(gè)一元一次方程即可.17、2【解析】

首先連接BD,由AB是⊙O的直徑,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度數(shù),又由AD=6,求得AB的長(zhǎng),繼而求得答案.【詳解】解:連接BD,∵AB是⊙O的直徑,∴∠C=∠D=90°,∵∠BAC=60°,弦AD平分∠BAC,∴∠BAD=∠BAC=30°,∴在Rt△ABD中,AB==4,∴在Rt△ABC中,AC=AB?cos60°=4×=2.故答案為2.18、ab(2a+1)(2a-1)【解析】

先提取公因式再用公式法進(jìn)行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點(diǎn)睛】此題主要考查因式分解單項(xiàng)式,解題的關(guān)鍵是熟知因式分解的方法.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)見解析;(3)存在,2【解析】

(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對(duì)邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當(dāng)最短時(shí),的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時(shí),的面積最小,當(dāng)時(shí),最短,此時(shí),的面積最小為.【點(diǎn)睛】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.20、(1)

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績(jī)好些(3)初中代表隊(duì)選手成績(jī)較為穩(wěn)定【解析】解:(1)填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成績(jī)好些.∵兩個(gè)隊(duì)的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績(jī)好些.(3)∵,,∴<,因此,初中代表隊(duì)選手成績(jī)較為穩(wěn)定.(1)根據(jù)成績(jī)表加以計(jì)算可補(bǔ)全統(tǒng)計(jì)表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計(jì)意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質(zhì)說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質(zhì)求解即可;(3)分三種情況求解:P為線段AB上的“好點(diǎn)”,P為線段AB延長(zhǎng)線上的“好點(diǎn)”,P為線段BA延長(zhǎng)線上的“好點(diǎn)”.【詳解】(1)真.理由如下:如圖,當(dāng)∠ABC=90°時(shí),M為PC中點(diǎn),BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點(diǎn)”;(2)∵P為BA延長(zhǎng)線上一個(gè)“好點(diǎn)”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M(jìn)為PC中點(diǎn),∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點(diǎn)”,則∠ACP=∠MBA,找AP中點(diǎn)D,連結(jié)MD;∵M(jìn)為CP中點(diǎn);∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長(zhǎng)線上的“好點(diǎn)”,則∠ACP=∠MBA,找AP中點(diǎn)D,此時(shí),D在線段AB上,如圖,連結(jié)MD;∵M(jìn)為CP中點(diǎn);∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延長(zhǎng)線上,舍去),DP=4∴AP=8;第二種情況(2),P為線段AB延長(zhǎng)線上的“好點(diǎn)”,找AP中點(diǎn)D,此時(shí),D在AB延長(zhǎng)線上,如圖,連結(jié)MD;此時(shí),∠MBA>∠MDB>∠DMP=∠ACP,則這種情況不存在,舍去;第三種情況,P為線段BA延長(zhǎng)線上的“好點(diǎn)”,則∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC則BC=BP=;∴∴綜上所述,或或;【點(diǎn)睛】本題考查了信息遷移,三角形外角的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想,理解“好點(diǎn)”的定義并能進(jìn)行分類討論是解答本題的關(guān)鍵.22、(1)(2)①②【解析】【分析】(1)根據(jù)關(guān)聯(lián)點(diǎn)的定義逐一進(jìn)行判斷即可得;(2))①當(dāng)時(shí),,,,,可以確定此時(shí)矩形上的所有點(diǎn)都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進(jìn)行討論即可得.【詳解】(1),x=2時(shí),y==1,此時(shí)P(2,1),則d=1+2=3,符合定義,是關(guān)聯(lián)點(diǎn);,x=1時(shí),y==,此時(shí)P(1,),則d=+=3,符合定義,是關(guān)聯(lián)點(diǎn);,x=4時(shí),y==4,此時(shí)P(4,4),則d=1+=6,不符合定義,不是關(guān)聯(lián)點(diǎn);,x=0時(shí),y==0,此時(shí)P(0,0),則d=4+5=9,不不符合定義,是關(guān)聯(lián)點(diǎn),故答案為;(2)①當(dāng)時(shí),,,,,此時(shí)矩形上的所有點(diǎn)都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時(shí),CF最長(zhǎng),當(dāng)CF=4時(shí),即=4,解得:t=,如圖3所示時(shí),DF最長(zhǎng),當(dāng)DF=4時(shí),即DF==4,解得t=,故答案為【點(diǎn)睛】本題考查了新定義題,二次函數(shù)的綜合,題目較難,讀懂新概念,能靈活應(yīng)用新概念,結(jié)合圖形解題是關(guān)鍵.23、(1)補(bǔ)圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對(duì)應(yīng)的比例即可求解;

(3)用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解.【詳解】(1)抽取的總?cè)藬?shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計(jì)圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時(shí)內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點(diǎn):條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖.24、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.

證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.25、100米.【解析】【分析】如圖,作PC⊥AB于C,構(gòu)造出Rt△PAC與Rt△PBC,求出AB的長(zhǎng)度,利用特殊角的三角函數(shù)值進(jìn)行求解即可得.【詳解】如圖,過P點(diǎn)作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形,利用特殊角的三角函數(shù)值進(jìn)行解答是關(guān)鍵.26、(1)證明見解析;(2)1【解析】

(1)根據(jù)正方形的性質(zhì)得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線和三角形內(nèi)角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點(diǎn),∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、三角形的內(nèi)角和定理、垂線、全等三角形的性質(zhì)和判定以及銳角三角函數(shù)等知識(shí)點(diǎn)的掌握和理解,證出△ABE≌△BCN是解此題的關(guān)鍵.27、(1)2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論