![江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view12/M00/21/33/wKhkGWb6QEGAXaa_AAIPSw5X-9g497.jpg)
![江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view12/M00/21/33/wKhkGWb6QEGAXaa_AAIPSw5X-9g4972.jpg)
![江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view12/M00/21/33/wKhkGWb6QEGAXaa_AAIPSw5X-9g4973.jpg)
![江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view12/M00/21/33/wKhkGWb6QEGAXaa_AAIPSw5X-9g4974.jpg)
![江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view12/M00/21/33/wKhkGWb6QEGAXaa_AAIPSw5X-9g4975.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省南京建鄴區(qū)六校聯(lián)考2024年中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設(shè)矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.2.已知關(guān)于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.53.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是()A. B. C. D.4.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認(rèn) B.真 C.復(fù) D.習(xí)5.2017年牡丹區(qū)政府工作報告指出:2012年以來牡丹區(qū)經(jīng)濟社會發(fā)展取得顯著成就,綜合實力明顯提升,地區(qū)生產(chǎn)總值由156.3億元增加到338億元,年均可比增長11.4%,338億用科學(xué)記數(shù)法表示為()A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×10106.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.7.如圖,在平面直角坐標(biāo)系中,半徑為2的圓P的圓心P的坐標(biāo)為(﹣3,0),將圓P沿x軸的正方向平移,使得圓P與y軸相切,則平移的距離為()A.1 B.3 C.5 D.1或58.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當(dāng)x=-2時,y取最大值;③當(dāng)m<4時,關(guān)于x的一元二次方程ax2+bx+c=m必有兩個不相等的實數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④9.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=010.下列計算錯誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,過CD延長線上一點E作⊙O的切線,切點為F.若∠ACF=65°,則∠E=.12.如圖,將的邊繞著點順時針旋轉(zhuǎn)得到,邊AC繞著點A逆時針旋轉(zhuǎn)得到,聯(lián)結(jié).當(dāng)時,我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).13.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是__.14.如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.15.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________16.分解因式:m3–m=_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點A落在對角線DB上的點F處,折痕為DE,打開矩形紙片,并連接EF.的長為多少;求AE的長;在BE上是否存在點P,使得的值最???若存在,請你畫出點P的位置,并求出這個最小值;若不存在,請說明理由.18.(8分)當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學(xué)七年級共有四個班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.求七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);現(xiàn)從A1,A2中各選出一人進(jìn)行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.19.(8分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達(dá)式;設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達(dá)式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?20.(8分)經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結(jié)果;并計算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉(zhuǎn)的概率.21.(8分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大??;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大?。?2.(10分)為了加強學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽.從中抽取了部分學(xué)生成績(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計,繪制統(tǒng)計頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量,a為:(2)n為°,E組所占比例為%:(3)補全頻數(shù)分布直方圖;(4)若成績在80分以上優(yōu)秀,全校共有2000名學(xué)生,估計成績優(yōu)秀學(xué)生有名.23.(12分)已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度數(shù);(2)當(dāng)AD=2時,求對角線BD的長和梯形ABCD的面積.24.如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當(dāng)∠DAE=時,四邊形ADFP是菱形;②當(dāng)∠DAE=時,四邊形BFDP是正方形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)題意找到等量關(guān)系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據(jù)實際問題中的條件列方程組時,要注意抓住題目中的一些關(guān)鍵性詞語,找出等量關(guān)系,列出方程組.2、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.3、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當(dāng)0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵M(jìn)N⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當(dāng)1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力,體現(xiàn)了分類討論的思想.4、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.5、D【解析】
根據(jù)科學(xué)記數(shù)法的定義可得到答案.【詳解】338億=33800000000=,故選D.【點睛】把一個大于10或者小于1的數(shù)表示為的形式,其中1≤|a|<10,這種記數(shù)法叫做科學(xué)記數(shù)法.6、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.7、D【解析】
分圓P在y軸的左側(cè)與y軸相切、圓P在y軸的右側(cè)與y軸相切兩種情況,根據(jù)切線的判定定理解答.【詳解】當(dāng)圓P在y軸的左側(cè)與y軸相切時,平移的距離為3-2=1,當(dāng)圓P在y軸的右側(cè)與y軸相切時,平移的距離為3+2=5,故選D.【點睛】本題考查的是切線的判定、坐標(biāo)與圖形的變化-平移問題,掌握切線的判定定理是解題的關(guān)鍵,解答時,注意分情況討論思想的應(yīng)用.8、B【解析】
結(jié)合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當(dāng)使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;
②若當(dāng)x=-2時,y取最大值,則由于點A和點B到x=-2的距離相等,這兩點的縱坐標(biāo)應(yīng)該相等,但是圖中點A和點B的縱坐標(biāo)顯然不相等,所以②錯誤,從而排除掉A和D;
剩下的選項中都有③,所以③是正確的;
易知直線y=kx+c(k≠0)經(jīng)過點A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復(fù)雜的二次函數(shù)綜合選擇題.9、A【解析】
由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.【點睛】此題主要考查拋物線的圖像,解題的關(guān)鍵是熟知拋物線的對稱性.10、C【解析】
解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負(fù)整數(shù)指數(shù)冪.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°.【解析】
解:連接DF,連接AF交CE于G,∵EF為⊙O的切線,∴∠OFE=90°,∵AB為直徑,H為CD的中點∴AB⊥CD,即∠BHE=90°,∵∠ACF=65°,∴∠AOF=130°,∴∠E=360°-∠BHE-∠OFE-∠AOF=50°,故答案為:50°.12、.【解析】
首先根據(jù)等邊三角形、“雙旋三角形”的定義得出△AB'C'是頂角為150°的等腰三角形,其中AB'=AC'=a.過C'作C'D⊥AB'于D,根據(jù)30°角所對的直角邊等于斜邊的一半得出C'DAC'a,然后根據(jù)S△AB'C'AB'?C'D即可求解.【詳解】∵等邊△ABC的邊長為a,∴AB=AC=a,∠BAC=60°.∵將△ABC的邊AB繞著點A順時針旋轉(zhuǎn)α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵邊AC繞著點A逆時針旋轉(zhuǎn)β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如圖,過C'作C'D⊥AB'于D,則∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'?C'Da?aa1.故答案為:a1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了含30°角的直角三角形的性質(zhì),等邊三角形的性質(zhì)以及三角形的面積.13、【解析】
列表得出所有等可能的情況數(shù),找出恰好是兩個連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個連續(xù)整數(shù)的情況有8種,則P(恰好是兩個連續(xù)整數(shù))=故答案為.【點睛】此題考查了列表法與樹狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.14、2【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點:1折疊問題;2勾股定理;1相似三角形.15、1【解析】
將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.16、m(m+1)(m-1)【解析】
根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解),可以先提公因式,再利用平方差完成因式分解【詳解】解:故答案為:m(m+1)(m-1).【點睛】本題考查因式分解,掌握因式分解的技巧是解題關(guān)鍵.三、解答題(共8題,共72分)17、(1);(2)的長為;(1)存在,畫出點P的位置如圖1見解析,的最小值為
.【解析】
(1)根據(jù)勾股定理解答即可;(2)設(shè)AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設(shè)AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長為;(1)存在,如圖1,延長CB到點G,使BG=BC,連接FG,交BE于點P,連接PC,則點P即為所求,此時有:PC=PG,∴PF+PC=GF.過點F作FH⊥BC,交BC于點H,則有FH∥DC,∴△BFH∽△BDC,∴,即,∴,∴GH=BG+BH.在Rt△GFH中,根據(jù)勾股定理,得:GF,即PF+PC的最小值為.【點睛】本題考查了四邊形的綜合題,涉及了折疊的性質(zhì)、勾股定理的應(yīng)用、相似三角形的判定和性質(zhì)等知識,知識點較多,難度較大,解答本題的關(guān)鍵是掌握設(shè)未知數(shù)列方程的思想.18、(1)15人;(2)補圖見解析.(3).【解析】
(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總?cè)藬?shù);(2)用總?cè)藬?shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);(3)根據(jù)題意畫出樹狀圖,得出所有可能,進(jìn)而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù):6÷40%=15人;(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數(shù)為:×360°=48°;(3)畫出樹狀圖如下:共6種等可能結(jié)果,符合題意的有3種∴選出一名男生一名女生的概率為:P=.【點睛】本題考查了條形圖與扇形統(tǒng)計圖,概率等知識,準(zhǔn)確識圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關(guān)鍵.19、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】
(1)用待定系數(shù)法求一次函數(shù)的表達(dá)式;(2)利用利潤的定義,求與之間的函數(shù)表達(dá)式;(3)利用二次函數(shù)的性質(zhì)求極值.【詳解】解:(1)設(shè),由題意,得,解得,∴所求函數(shù)表達(dá)式為.(2).(3),其中,∵,∴當(dāng)時,隨的增大而增大,當(dāng)時,隨的增大而減小,當(dāng)售價為70元時,獲得最大利潤,這時最大利潤為1800元.考點:二次函數(shù)的實際應(yīng)用.20、(1);(2).【解析】
(1)可以采用列表法或樹狀圖求解.可以得到一共有9種情況,從中找到兩輛汽車都不直行的結(jié)果數(shù),根據(jù)概率公式計算可得;(2)根據(jù)樹狀圖得出至少有一輛汽車向左轉(zhuǎn)的結(jié)果數(shù),根據(jù)概率公式可得答案.【詳解】(1)畫“樹形圖”列舉這兩輛汽車行駛方向所有可能的結(jié)果如圖所示:∴這兩輛汽車行駛方向共有9種可能的結(jié)果,其中兩輛汽車都不直行的有4種結(jié)果,所以兩輛汽車都不直行的概率為;(2)由(1)中“樹形圖”知,至少有一輛汽車向左轉(zhuǎn)的結(jié)果有5種,且所有結(jié)果的可能性相等∴P(至少有一輛汽車向左轉(zhuǎn))=.【點睛】此題考查了樹狀圖法求概率.解題的關(guān)鍵是根據(jù)題意畫出樹狀圖,再由概率=所求情況數(shù)與總情況數(shù)之比求解.21、(1)30°;(2)20°;【解析】
(1)利用圓切線的性質(zhì)求解;(2)連接OQ,利用圓的切線性質(zhì)及角之間的關(guān)系求解?!驹斀狻浚?)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質(zhì)及圓中集合問題的綜合運等.22、(1)200;16(2)126;12%(3)見解析(4)940【解析】分析:(1)由于A組的頻數(shù)比B組小24,而A組的頻率比B組小12%,則可計算出調(diào)查的總?cè)藬?shù),然后計算a和b的值;(2)用360度乘以D組的頻率可得到n的值,根據(jù)百分比之和為1可得E組百分比;(3)計算出C和E組的頻數(shù)后補全頻數(shù)分布直方圖;(4)利用樣本估計總體,用2000乘以D組和E組的頻率和即可.本題解析:()調(diào)查的總?cè)藬?shù)為,∴,,()部分所對的圓心角,即,組所占比例為:,()組的頻數(shù)為,組的頻數(shù)為,補全頻數(shù)分布直方圖為:(),∴估計成績優(yōu)秀的學(xué)生有人.點睛:本題考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,要認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,也考查了用樣本估計總體.23、:(1)30o;(2).【解析】分析:(1)由已知條件易得∠ABC=∠A=60°,結(jié)合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)過點D作DH⊥AB于點H,則∠AHD=30
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年建筑工程設(shè)備租賃合同范例
- 2025年養(yǎng)豬企業(yè)租賃合同指南
- 2025年專利權(quán)合同轉(zhuǎn)讓協(xié)議
- 2025年動漫師聘請合同
- 2025年企業(yè)股權(quán)聯(lián)盟合同樣本
- 2025年倉儲物品保管合同格式
- 2025年協(xié)作承包協(xié)議(物流行業(yè))
- 2025年中藥材種植合作諒解協(xié)議
- 2025年再婚與前妻之間的解除婚姻策劃協(xié)議書樣本
- 2025年企業(yè)股權(quán)分割與分配協(xié)議
- 2025年中華工商時報社事業(yè)單位招聘12人歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 安全生產(chǎn)事故調(diào)查與案例分析(第3版)課件 呂淑然 第1-4章 緒論-應(yīng)急預(yù)案編制與應(yīng)急管理
- Starter Unit 1 Hello!說課稿2024-2025學(xué)年人教版英語七年級上冊
- 2025年初中語文:春晚觀后感三篇
- Unit 7 第3課時 Section A (Grammar Focus -4c)(導(dǎo)學(xué)案)-【上好課】2022-2023學(xué)年八年級英語下冊同步備課系列(人教新目標(biāo)Go For It!)
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》解讀講座
- 2024-2025學(xué)年廣東省深圳市寶安區(qū)高一(上)期末數(shù)學(xué)試卷(含答案)
- 《基于新課程標(biāo)準(zhǔn)的初中數(shù)學(xué)課堂教學(xué)評價研究》
- 省級產(chǎn)業(yè)園區(qū)基礎(chǔ)設(shè)施項目可行性研究報告
- 2025年中國東方航空招聘筆試參考題庫含答案解析
- 《微生物燃料電池MF》課件
評論
0/150
提交評論