江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷含解析_第1頁
江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷含解析_第2頁
江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷含解析_第3頁
江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷含解析_第4頁
江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市東臺市第五聯(lián)盟2024屆中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.2.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿易戰(zhàn),但絕不懼怕貿易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數(shù)據(jù)30億用科學記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10103.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|4.等式組的解集在下列數(shù)軸上表示正確的是(

).A.

B.C.

D.5.“遼寧號”航母是中國海軍航空母艦的首艦,標準排水量57000噸,滿載排水量67500噸,數(shù)據(jù)67500用科學記數(shù)法表示為A.675×102 B.67.5×102 C.6.75×104 D.6.75×1056.若數(shù)a使關于x的不等式組有解且所有解都是2x+6>0的解,且使關于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個數(shù)是()A.5 B.4 C.3 D.27.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm9.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.1010.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.7211.某果園2011年水果產量為100噸,2013年水果產量為144噸,求該果園水果產量的年平均增長率.設該果園水果產量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=14412.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關于這組數(shù)據(jù)的描述正確的是()A.最低溫度是32℃ B.眾數(shù)是35℃ C.中位數(shù)是34℃ D.平均數(shù)是33℃二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.14.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結果保留π).15.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.16.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.17.從﹣2,﹣1,2這三個數(shù)中任取兩個不同的數(shù)相乘,積為正數(shù)的概率是_____.18.因式分解:a2b+2ab+b=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.20.(6分)定義:對于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達式為_____;(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點B、A,且兩函數(shù)圖象的交點的橫坐標分別為1和2,在∠AOB內部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動點P,過點P作x軸的平行線與其伴生一次函數(shù)的圖象交于點Q,設點P的橫坐標為n,直接寫出線段PQ的長為時n的值.21.(6分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結.(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.22.(8分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.23.(8分)如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(﹣4,n).求n和b的值;求△OAB的面積;直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.24.(10分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).25.(10分)如圖矩形ABCD中AB=6,AD=4,點P為AB上一點,把矩形ABCD沿過P點的直線l折疊,使D點落在BC邊上的D′處,直線l與CD邊交于Q點.(1)在圖(1)中利用無刻度的直尺和圓規(guī)作出直線l.(保留作圖痕跡,不寫作法和理由)(2)若PD′⊥PD,①求線段AP的長度;②求sin∠QD′D.26.(12分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.27.(12分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】根據(jù)銳角三角函數(shù)的性質,可知cosA==,然后根據(jù)AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數(shù)值即可求解.2、A【解析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學記數(shù)法表示為,故選A.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.3、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.4、B【解析】【分析】分別求出每一個不等式的解集,然后在數(shù)軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.5、C【解析】

根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).【詳解】67500一共5位,從而67500=6.75×104,故選C.6、D【解析】

由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.7、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、C【解析】

由∥可得△ADE∽△ABC,再根據(jù)相似三角形的性質即可求得結果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點:相似三角形的判定和性質點評:解答本題的關鍵是熟練掌握相似三角形的對應邊成比例,注意對應字母在對應位置上.9、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.10、D【解析】設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解.11、D【解析】試題分析:2013年的產量=2011年的產量×(1+年平均增長率)2,把相關數(shù)值代入即可.解:2012年的產量為100(1+x),2013年的產量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產量的等量關系是解決本題的關鍵.12、D【解析】分析:將數(shù)據(jù)從小到大排列,由中位數(shù)及眾數(shù)、平均數(shù)的定義,可得出答案.詳解:由折線統(tǒng)計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數(shù)為33℃,中位數(shù)為33℃,平均數(shù)是=33℃.故選D.點睛:本題考查了眾數(shù)、中位數(shù)的知識,解答本題的關鍵是由折線統(tǒng)計圖得到最高氣溫的7個數(shù)據(jù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-2-3【解析】

先求出每個不等式的解集,再求出不等式組的解集,即可得出關于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.【點睛】本題主要考查解含參數(shù)的不等式組.14、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉的性質,扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質,求出陰影部分的面積等于兩個扇形的面積的差是解題的關鍵.15、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質、線段垂直平分線的性質、三角形面積公式等知識;熟練掌握勾股定理是解題的關鍵.16、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關鍵.17、【解析】

首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結果與積為正數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6種等可能結果,其中積為正數(shù)的有2種結果,所以積為正數(shù)的概率為,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.18、b2【解析】該題考查因式分解的定義首先可以提取一個公共項b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b2三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)AC的長為.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,勾股定理,求出BC=8是解本題的關鍵.20、y=x﹣5【解析】分析:(1)根據(jù)定義,直接變形得到伴生一次函數(shù)的解析式;(2)求出頂點,代入伴生函數(shù)解析式即可求解;(3)根據(jù)題意得到伴生函數(shù)解析式,根據(jù)P點的坐標,坐標表示出縱坐標,然后通過PQ與x軸的平行關系,求得Q點的坐標,由PQ的長列方程求解即可.詳解:(1)∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達式為y=(x﹣1)﹣4=x﹣5,故答案為y=x﹣5;(2)∵二次函數(shù)y=(x﹣1)2﹣4,∴頂點坐標為(1,﹣4),∵二次函數(shù)y=(x﹣1)2﹣4,∴其伴生一次函數(shù)的表達式為y=x﹣5,∴當x=1時,y=1﹣5=﹣4,∴(1,﹣4)在直線y=x﹣5上,即:二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;(3)∵二次函數(shù)y=m(x﹣1)2﹣4m,∴其伴生一次函數(shù)為y=m(x﹣1)﹣4m=mx﹣5m,∵P點的橫坐標為n,(n>2),∴P的縱坐標為m(n﹣1)2﹣4m,即:P(n,m(n﹣1)2﹣4m),∵PQ∥x軸,∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),∴PQ=(n﹣1)2+1﹣n,∵線段PQ的長為,∴(n﹣1)2+1﹣n=,∴n=.點睛:此題主要考查了新定義下的函數(shù)關系式,關鍵是理解新定義的特點構造伴生函數(shù)解析式.21、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當CD=DE時.∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點D和點O重合,此時,點C和點B重合,∴CD=2.綜上所述:當△DCE是以CD為腰的等腰三角形時,CD的長為2或.【點睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質,菱形的判定和性質,銳角三角函數(shù),作出輔助線是解答本題的關鍵.22、1m【解析】

連接AN、BQ,過B作BE⊥AN于點E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長,在直角△ABE中,依據(jù)勾股定理即可求得AB的長.【詳解】連接AN、BQ,∵點A在點N的正北方向,點B在點Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個小亭A、B之間的距離為1米.【點睛】本題考查勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.23、(1)-1;(2);(3)x>1或﹣4<x<0.【解析】

(1)把A點坐標分別代入反比例函數(shù)與一次函數(shù)解析式,求出k和b的值,把B點坐標代入反比例函數(shù)解析式求出n的值即可;(2)設直線y=x+3與y軸的交點為C,由S△AOB=S△AOC+S△BOC,根據(jù)A、B兩點坐標及C點坐標,利用三角形面積公式即可得答案;(3)利用函數(shù)圖像,根據(jù)A、B兩點坐標即可得答案.【詳解】(1)把A點(1,4)分別代入反比例函數(shù)y=,一次函數(shù)y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點B(﹣4,n)也在反比例函數(shù)y=的圖象上,∴n==﹣1;(2)如圖,設直線y=x+3與y軸的交點為C,∵當x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據(jù)圖象可知:當x>1或﹣4<x<0時,一次函數(shù)值大于反比例函數(shù)值.【點睛】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義,這里體現(xiàn)了數(shù)形結合的思想.24、【解析】

過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據(jù)AD+BD=AB列方程求解可得.【詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論