版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省成都市成都市樹德中學(xué)2025屆數(shù)學(xué)高一上期末監(jiān)測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則()A.5 B.C. D.2.若直線經(jīng)過兩點,且傾斜角為45°,則m的值為A. B.1C.2 D.3.令,,,則三個數(shù)、、的大小順序是()A. B.C. D.4.關(guān)于函數(shù)的敘述中,正確的有()①的最小正周期為;②在區(qū)間內(nèi)單調(diào)遞增;③是偶函數(shù);④的圖象關(guān)于點對稱.A.①③ B.①④C.②③ D.②④5.設(shè),,,則有()A. B.C. D.6.函數(shù)的定義域為()A.R B.C. D.7.已知函數(shù)f(x)=有兩不同的零點,則的取值范圍是()A.(?∞,0) B.(0,+∞)C.(?1,0) D.(0,1)8.的零點所在的一個區(qū)間為()A. B.C. D.9.設(shè)集合,,則()A B.C. D.10.設(shè)是兩個單位向量,且,那么它們的夾角等于()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)則不等式的解集是_____________12.已知,則____________.13.已知在平面直角坐標(biāo)系中,角頂點在原點,始邊與軸的正半軸重合,終邊經(jīng)過點,則___________.14.設(shè)函數(shù),若,則的取值范圍是________.15.已知,,則_________.16.已知函數(shù),則______,若,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1),求和的值;(2)若,求的值.18.已知定義域為的函數(shù)是奇函數(shù)(Ⅰ)求值;(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;(Ⅳ)設(shè)關(guān)于的函數(shù)有零點,求實數(shù)的取值范圍.19.義域為的函數(shù)滿足:對任意實數(shù)x,y均有,且,又當(dāng)時,.(1)求的值,并證明:當(dāng)時,;(2)若不等式對任意恒成立,求實數(shù)的取值范圍.20.已知圓外有一點,過點作直線(1)當(dāng)直線與圓相切時,求直線的方程;(2)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長21.某種有獎銷售的飲料,瓶蓋內(nèi)印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎勵一瓶”字樣即為中獎,中獎概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料(Ⅰ)求三位同學(xué)都沒有中獎的概率;(Ⅱ)求三位同學(xué)中至少有兩位沒有中獎的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】分段函數(shù)求值,根據(jù)自變量的取值范圍代相應(yīng)的對應(yīng)關(guān)系【詳解】因為所以故選:A2、A【解析】由兩點坐標(biāo)求出直線的斜率,再由斜率等于傾斜角的正切值列出方程求得的值.【詳解】因為經(jīng)過兩點,的直線的傾斜角為45°,∴,解得,故選A【點睛】本題主要考查了直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.3、D【解析】由已知得,,,判斷可得選項.【詳解】解:由指數(shù)函數(shù)和對數(shù)函數(shù)的圖象可知:,,,所以,故選:D【點睛】本題考查了對數(shù)式、指數(shù)式的大小比較,比較大小的常用方法為同底的對數(shù)式和指數(shù)式利用其單調(diào)性進行比較,也可以借助于中間值0和1進行比較,考查了運算求解能力與邏輯推理能力,屬于中檔題.4、C【解析】應(yīng)用差角余弦公式、二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質(zhì),結(jié)合各項描述判斷正誤即可.【詳解】,∴最小正周期,①錯誤;令,則在上遞增,顯然當(dāng)時,②正確;,易知為偶函數(shù),③正確;令,則,,易知的圖象關(guān)于對稱,④錯誤;故選:C5、C【解析】利用和差公式,二倍角公式等化簡,再利用正弦函數(shù)的單調(diào)性比較大小.【詳解】,,,因為函數(shù)在上是增函數(shù),,所以由三角函數(shù)線知:,,因為,所以,所以故選:C.6、B【解析】要使函數(shù)有意義,則需要滿足即可.【詳解】要使函數(shù)有意義,則需要滿足所以的定義域為,故選:B7、A【解析】函數(shù)f(x)=有兩不同的零點,可以轉(zhuǎn)化為直線與函數(shù)的圖象有兩個不同的交點,構(gòu)造不等式即可求得的取值范圍.【詳解】由題可知方程有兩個不同的實數(shù)根,則直線與函數(shù)的圖象有兩個不同的交點,作出與的大致圖象如下:不妨設(shè),由圖可知,,整理得,由基本不等式得,(當(dāng)且僅當(dāng)時等號成立)又,所以,解得,故選:A8、A【解析】根據(jù)零點存在性定理分析判斷即可【詳解】因為在上單調(diào)遞增,所以函數(shù)至多有一個零點,因為,,所以,所以的零點所在的一個區(qū)間為,故選:A9、C【解析】利用集合的交集運算求解.【詳解】因為集合,,所以,故選:C10、C【解析】由條件兩邊平方可得,代入夾角公式即可得到結(jié)果.【詳解】由,可得:,又是兩個單位向量,∴∴∴它們的夾角等于故選C【點睛】本題考查單位向量的概念,向量數(shù)量積的運算及其計算公式,向量夾角余弦的計算公式,以及已知三角函數(shù)求角,清楚向量夾角的范圍二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分和0的大小關(guān)系分別代入對應(yīng)的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當(dāng),即時,,故;當(dāng),即時,,故;∴不等式的解集是:.故答案為:.12、【解析】求得函數(shù)的最小正周期為,進而計算出的值(其中),再利用周期性求解即可.【詳解】函數(shù)的最小正周期為,當(dāng)時,,,,,,,所以,,,因此,.故答案為:.13、【解析】根據(jù)角的終邊經(jīng)過點,利用三角函數(shù)的定義求得,然后利用二倍角公式求解.【詳解】因為角的終邊經(jīng)過點,所以,所以,所以,故答案為:14、【解析】當(dāng)時,由,求得x0的范圍;當(dāng)x0<2時,由,求得x0的取值范圍,再把這兩個x0的取值范圍取并集,即為所求.【詳解】當(dāng)時,由,求得x0>3;當(dāng)x0<2時,由,解得:x0<-1.綜上所述:x0的取值范圍是.故答案為:15、【解析】利用兩角差的正切公式可計算出的值.【詳解】由兩角差的正切公式得.故答案為:.【點睛】本題考查利用兩角差的正切公式求值,解題的關(guān)鍵就是弄清角與角之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.16、①.15②.-3或【解析】根據(jù)分段函數(shù)直接由內(nèi)到外計算即可求,當(dāng)時,分段討論即可求解.【詳解】,,時,若,則,解得或(舍去),若,則,解得,綜上,或,故答案為:15;-3或【點睛】本題主要考查了分段函數(shù)的解析式,已知自變量求函數(shù)值,已知函數(shù)值求自變量,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)同角三角函數(shù)基本關(guān)系式,以及二倍角公式,即可求解;(2)根據(jù)角的變換,再結(jié)合兩角和的余弦公式,即可求解.【小問1詳解】,,,得,;【小問2詳解】,,,,.18、(Ⅰ);(Ⅱ)答案見解析;(Ⅲ)(Ⅳ).【解析】(1)根據(jù)奇函數(shù)性質(zhì)得,解得值;(2)根據(jù)單調(diào)性定義,作差通分,根據(jù)指數(shù)函數(shù)單調(diào)性確定因子符號,最后根據(jù)差的符號確定單調(diào)性(3)根據(jù)奇偶性以及單調(diào)性將不等式化為一元二次不等式恒成立問題,利用判別式求實數(shù)的取值范圍;(4)根據(jù)奇偶性以及單調(diào)性將方程轉(zhuǎn)化為一元二次方程有解問題,根據(jù)二次函數(shù)圖像與性質(zhì)求值域,即得實數(shù)的取值范圍.試題解析:(Ⅰ)由題設(shè),需,∴,∴,經(jīng)驗證,為奇函數(shù),∴.(Ⅱ)減函數(shù)證明:任取,,且,則,∵∴∴,;∴,即∴該函數(shù)在定義域上減函數(shù).(Ⅲ)由得,∵是奇函數(shù),∴,由(Ⅱ)知,是減函數(shù)∴原問題轉(zhuǎn)化為,即對任意恒成立,∴,得即為所求.(Ⅳ)原函數(shù)零點的問題等價于方程由(Ⅱ)知,,即方程有解∵,∴當(dāng)時函數(shù)存在零點.點睛:利用函數(shù)性質(zhì)解不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi).19、(1)答案見解析;(2)或.【解析】(1)利用賦值法計算可得,設(shè),則,利用拆項:即可證得:當(dāng)時,;(2)結(jié)合(1)的結(jié)論可證得是增函數(shù),據(jù)此脫去f符號,原問題轉(zhuǎn)化為在上恒成立,分離參數(shù)有:恒成立,結(jié)合基本不等式的結(jié)論可得實數(shù)的取值范圍是或.試題解析:(1)令,得,令,得,令,得,設(shè),則,因為,所以;(2)設(shè),
,
因為所以,所以為增函數(shù),所以,
即,上式等價于對任意恒成立,因為,所以上式等價于對任意恒成立,設(shè),(時取等),所以,解得或.20、(1)或(2)【解析】(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時,直線的方程為,滿足題意當(dāng)斜率存在時,設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題考查了直線的方程、直線與圓的位置關(guān)系、點到直線的距離公式及弦長公式,培養(yǎng)了學(xué)生分析問題與解決問題的能力.21、(1);(2).【解析】(1)因為甲、乙、丙三位同學(xué)是否中獎是相互獨立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語外貿(mào)大學(xué)南國商學(xué)院《房地產(chǎn)會計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《教學(xué)設(shè)計案例分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東食品藥品職業(yè)學(xué)院《材料化學(xué)合成與制備》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《城市地理信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級上冊《6.3.1角的概念》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《現(xiàn)代電子技術(shù)綜合設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東梅州職業(yè)技術(shù)學(xué)院《企業(yè)運營管理課程設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 二班小學(xué)二年級少先隊工作計劃-指導(dǎo)思想
- 人教版歷史必修3第一單元《中國傳統(tǒng)文化主流思想的演變》測試題
- 《XX戰(zhàn)略講稿》課件
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 市場營銷試題(含參考答案)
- 2024年醫(yī)療器械經(jīng)營質(zhì)量管理規(guī)范培訓(xùn)課件
- 景區(qū)旅游安全風(fēng)險評估報告
- 2023年新高考(新課標(biāo))全國2卷數(shù)學(xué)試題真題(含答案解析)
- 事業(yè)單位工作人員獎勵審批表
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗規(guī)程
- 小學(xué)數(shù)學(xué)小專題講座《數(shù)學(xué)教學(xué)生活化 》(課堂PPT)
- 雞場養(yǎng)殖情況記錄登記表
- 高壓配電柜系列產(chǎn)品出廠檢驗規(guī)范
- 節(jié)流孔板孔徑計算
評論
0/150
提交評論