重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第1頁(yè)
重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第2頁(yè)
重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第3頁(yè)
重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第4頁(yè)
重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶康德卷2025屆高二上數(shù)學(xué)期末檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集是()A. B.,或C.,或 D.,或,或2.已知是等比數(shù)列,則()A.數(shù)列是等差數(shù)列 B.數(shù)列是等比數(shù)列C.數(shù)列是等差數(shù)列 D.數(shù)列是等比數(shù)列3.如圖,在三棱錐S-ABC中,E,F(xiàn)分別為SA,BC的中點(diǎn),點(diǎn)G在EF上,且滿足,若,,,則()A. B.C. D.4.在的展開(kāi)式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則()A.5 B.6C.7 D.85.方程與的曲線在同一坐標(biāo)系中的示意圖應(yīng)是()A. B.C. D.6.函數(shù)的圖象大致為()A. B.C. D.7.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)8.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.9.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.10.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實(shí)數(shù)a的取值范圍為()A. B.C. D.11.如圖,在正方體中,E為的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.12.過(guò)點(diǎn)作圓的切線,則切線的方程為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩隊(duì)進(jìn)行籃球決賽,采取七場(chǎng)四勝制(當(dāng)一隊(duì)贏得四場(chǎng)勝利時(shí),該隊(duì)獲勝,決賽結(jié)束).根據(jù)前期比賽成績(jī),甲隊(duì)的主客場(chǎng)安排依次為“主主客客主客主”.設(shè)甲隊(duì)主場(chǎng)取勝的概率為0.6,客場(chǎng)取勝的概率為0.5,且各場(chǎng)比賽結(jié)果相互獨(dú)立,則甲隊(duì)以4∶1獲勝的概率是____________14.求值______.15.已知p:x>a是q:2<x<3的必要不充分條件,則實(shí)數(shù)a的取值范圍是______.16.已知某地區(qū)內(nèi)貓的壽命超過(guò)10歲的概率為0.9,超過(guò)12歲的概率為0.6,那么該地區(qū)內(nèi),一只壽命超過(guò)10歲的貓的壽命超過(guò)12歲的概率為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)求的導(dǎo)數(shù);(2)求函數(shù)的圖象在點(diǎn)處的切線方程.18.(12分)已知點(diǎn),橢圓:離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由19.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內(nèi)的射影O恰好為AD的中點(diǎn),M為AB的中點(diǎn).(1)求證:平面;(2)求平面與平面夾角的余弦值.20.(12分)如圖1所示,在四邊形ABCD中,,,,將△沿BD折起,使得直線AB與平面BCD所成的角為45°,連接AC,得到如圖2所示的三棱錐(1)證明:平面ABD平面BCD;(2)若三棱錐中,二面角的大小為60°,求三棱錐的體積21.(12分)在數(shù)列中,,是與的等差中項(xiàng),(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項(xiàng)的和22.(10分)已知函數(shù)(1)當(dāng)在處取得極值時(shí),求函數(shù)的解析式;(2)當(dāng)?shù)臉O大值不小于時(shí),求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先利用已知一元二次不等式的解集求得參數(shù),再代入所求不等式,利用分式大于零,則分子分母同號(hào),列不等式計(jì)算即得結(jié)果.【詳解】不等式解集為,即的二根是1和2,利用根和系數(shù)的關(guān)系可知,故不等式即轉(zhuǎn)化成,即,等價(jià)于或者,解得或,或者.故解集為,或,或.故選:D.【點(diǎn)睛】分式不等式的解法:(1)先化簡(jiǎn)成右邊為零的形式(或),等價(jià)于一元二次不等式(或)再求解即可;(2)先化簡(jiǎn)成右邊為零的形式(或),再利用分子分母同號(hào)(或者異號(hào)),列不等式組求解即可.2、B【解析】取,可判斷AC選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);取可判斷D選項(xiàng).【詳解】若,則、無(wú)意義,A錯(cuò)C錯(cuò);設(shè)等比數(shù)列的公比為,則,(常數(shù)),故數(shù)列是等比數(shù)列,B對(duì);取,則,數(shù)列為等比數(shù)列,因?yàn)?,,,且,所以,?shù)列不是等比數(shù)列,D錯(cuò).故選:B.3、B【解析】利用空間向量基本定理結(jié)合已知條件求解【詳解】因?yàn)椋?,因?yàn)镋,F(xiàn)分別為SA,BC的中點(diǎn),所以,故選:B4、B【解析】當(dāng)n為偶數(shù)時(shí),展開(kāi)式中第項(xiàng)二項(xiàng)式系數(shù)最大,當(dāng)n為奇數(shù)時(shí),展開(kāi)式中第和項(xiàng)二項(xiàng)式系數(shù)最大.【詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故,得.故選:B5、A【解析】方程即,表示拋物線,方程表示橢圓或雙曲線,當(dāng)和同號(hào)時(shí),拋物線開(kāi)口向左,方程表示焦點(diǎn)在軸的橢圓,無(wú)符合條件的選項(xiàng);當(dāng)和異號(hào)時(shí),拋物線開(kāi)口向右,方程表示雙曲線,本題選擇A選項(xiàng).6、A【解析】由題意首先確定函數(shù)的奇偶性,然后考查函數(shù)在特殊點(diǎn)的函數(shù)值排除錯(cuò)誤選項(xiàng)即可確定函數(shù)的圖象.【詳解】由函數(shù)的解析式可得:,則函數(shù)為奇函數(shù),其圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,選項(xiàng)CD錯(cuò)誤;當(dāng)時(shí),,選項(xiàng)B錯(cuò)誤.故選:A.【點(diǎn)睛】函數(shù)圖象的識(shí)辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì).(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性.(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.利用上述方法排除、篩選選項(xiàng)7、C【解析】根據(jù)莖葉圖依次計(jì)算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.8、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.9、D【解析】以為坐標(biāo)原點(diǎn),向量,,方向分別為、、軸建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【詳解】以為坐標(biāo)原點(diǎn),向量,,方向分別為、、軸建立空間直角坐標(biāo)系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.10、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因?yàn)椋运钥傻迷谏虾愠闪?,即在上恒成立,故只需,,?dāng)時(shí),,故故選:B11、D【解析】構(gòu)建空間直角坐標(biāo)系,求直線的方向向量、平面的法向量,應(yīng)用空間向量的坐標(biāo)表示,求直線與平面所成角的正弦值.【詳解】以點(diǎn)D為坐標(biāo)原點(diǎn),向量分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,可得,,,設(shè)面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.12、C【解析】設(shè)切線的方程為,然后利用圓心到直線的距離等于半徑建立方程求解即可.【詳解】圓的圓心為原點(diǎn),半徑為1,當(dāng)切線的斜率不存在時(shí),即直線的方程為,不與圓相切,當(dāng)切線的斜率存在時(shí),設(shè)切線的方程為,即所以,解得或所以切線的方程為或故選:C二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】本題應(yīng)注意分情況討論,即前五場(chǎng)甲隊(duì)獲勝的兩種情況,應(yīng)用獨(dú)立事件的概率的計(jì)算公式求解.題目有一定的難度,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力及分類討論思想的考查【詳解】前四場(chǎng)中有一場(chǎng)客場(chǎng)輸,第五場(chǎng)贏時(shí),甲隊(duì)以獲勝的概率是前四場(chǎng)中有一場(chǎng)主場(chǎng)輸,第五場(chǎng)贏時(shí),甲隊(duì)以獲勝的概率是綜上所述,甲隊(duì)以獲勝的概率是【點(diǎn)睛】由于本題題干較長(zhǎng),所以,易錯(cuò)點(diǎn)之一就是能否靜心讀題,正確理解題意;易錯(cuò)點(diǎn)之二是思維的全面性是否具備,要考慮甲隊(duì)以獲勝的兩種情況;易錯(cuò)點(diǎn)之三是是否能夠準(zhǔn)確計(jì)算14、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:15、【解析】根據(jù)充分性和必要性,求得參數(shù)取值范圍,即可求得結(jié)果.【詳解】因?yàn)閜:x>a是q:2<x<3的必要不充分條件,故集合為集合的真子集,故只需.故答案為:.16、【解析】根據(jù)條件概率公式求解即可.【詳解】設(shè)事件A:貓的壽命超過(guò)10歲,事件B:貓的壽命超過(guò)12歲.依題意有,,則一只壽命超過(guò)10歲貓的壽命超過(guò)12歲的概率.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)利用基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則直接計(jì)算作答.(2)求出,再利用導(dǎo)數(shù)的幾何意義求出切線方程作答.【小問(wèn)1詳解】函數(shù)定義域?yàn)椋院瘮?shù).【小問(wèn)2詳解】由(1)知,,而,于是得,即,所以函數(shù)的圖象在點(diǎn)處的切線方程是.18、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問(wèn)1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)椋?,所以,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.19、(1)證明見(jiàn)解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問(wèn)1詳解】因?yàn)镺為在平面ABCD內(nèi)的射影,所以平面ABCD,因?yàn)槠矫鍭BCD,所以.如圖,連接BD,在中,.設(shè)CD的中點(diǎn)為P,連接BP,因?yàn)椋?,,所以,且,則.因?yàn)?,所以,易知,所?因?yàn)槠矫?,平面,,所以平?【小問(wèn)2詳解】由(1)知平面ABCD,所以可以點(diǎn)O為坐標(biāo)原點(diǎn),以O(shè)A,,所在直線分別為x,z,以平面ABCD內(nèi)過(guò)點(diǎn)O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,,,設(shè)平面的法向量為,,,則可取平面的一個(gè)法向量為.設(shè)平面的法向量為,,,則令,得平面的一個(gè)法向量為.設(shè)平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.20、(1)證明見(jiàn)解析;(2).【解析】(1)過(guò)作面,連接,結(jié)合題設(shè)易知,根據(jù)過(guò)面外一點(diǎn)在該面上垂線性質(zhì)知重合,再應(yīng)用面面垂直的判定證明結(jié)論.(2)面中過(guò)作,結(jié)合題設(shè)構(gòu)建空間直角坐標(biāo)系,設(shè)并確定相關(guān)點(diǎn)坐標(biāo),求面、面法向量,應(yīng)用空間向量夾角的坐標(biāo)表示列方程求參數(shù),最后由棱錐體積公式求體積.【小問(wèn)1詳解】由題設(shè),易知:△是等腰直角三角形,即,將△沿BD折起過(guò)程中使直線AB與平面BCD所成的角為45°,此時(shí)過(guò)作面,連接,如下圖示,所以,在△中,又且面,因?yàn)檫^(guò)平面外一點(diǎn)有且只有一條垂線段,故重合,此時(shí)面,又面,故平面ABD平面BCD;【小問(wèn)2詳解】在平面中過(guò)作,由(1)結(jié)論可構(gòu)建如下圖示的空間直角坐標(biāo)系,由,,,若,則,故,,,若是面的一個(gè)法向量,則,若,則,若是面的一個(gè)法向量,則,若,則,所以,由二面角的大小為60°有,解得,故21、(1)證明見(jiàn)解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求出,可計(jì)算得出,利用并項(xiàng)求和法可求得數(shù)列的前項(xiàng)的和.小問(wèn)1詳解】解:由題意知是與的等差中項(xiàng),可得,可得,則,可得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論