版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣西桂林市、防城港市聯(lián)合調研高一上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從3名男同學,2名女同學中任選2人參加體能測試,則選到的2名同學中至少有一名男同學的概率是()A. B.C. D.2.設函數(shù),若關于方程有個不同實根,則實數(shù)的取值范圍為()A. B.C. D.3.在中,,.若點滿足,則()A. B.C. D.4.在內,不等式解集是()A. B.C. D.5.已知是定義在區(qū)間上的奇函數(shù),當時,.則關于的不等式的解集為A. B.C. D.6.O為正方體底面ABCD的中心,則直線與的夾角為A. B.C. D.7.函數(shù)f(x)=-|sin2x|在上零點的個數(shù)為()A.2 B.4C.5 D.68.設全集U=N*,集合A={1,2,5},B={2,4,6},則圖中的陰影部分表示的集合為()A. B.4,C. D.3,9.若,則它是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.已知函數(shù),若當時,恒成立,則實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為角終邊上一點,且,則______12.已知角的終邊經(jīng)過點,則的值是______.13.在空間直角坐標系中,點A到坐標原點距離為2,寫出點A的一個坐標:____________14.定義在上的函數(shù)滿足,且時,,則________15.已知函數(shù)的最大值與最小值之差為,則______16.在中,三個內角所對的邊分別為,,,,且,則的取值范圍為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓的方程為,是坐標原點.直線與圓交于兩點(1)求的取值范圍;(2)過點作圓的切線,求切線所在直線的方程.18.設全集為,或,.(1)求,;(2)求.19.如圖,在平行四邊形中,設,.(1)用向量,表示向量,;(2)若,求證:.20.已知函數(shù).(1)求函數(shù)的定義域;(2)設,若函數(shù)在上有且僅有一個零點,求實數(shù)的取值范圍;(3)設,是否存在正實數(shù),使得函數(shù)在內的最大值為4?若存在,求出的值;若不存在,請說明理由.21.某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比,已知投資1萬元時兩類產(chǎn)品的收益分別為萬元和萬元(如圖).(1)分別寫出兩種產(chǎn)品的收益和投資的函數(shù)關系;(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大的收益,其最大收益為多少萬元?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先計算一名男同學都沒有的概率,再求至少有一名男同學的概率即可.【詳解】兩名同學中一名男同學都沒有的概率為,則2名同學中至少有一名男同學的概率是.故選:A.2、B【解析】等價于,即或,轉化為與和圖象交點的個數(shù)為個,作出函數(shù)的圖象,數(shù)形結合即可求解【詳解】作出函數(shù)的圖象如下圖所示變形得,由此得或,方程只有兩根所以方程有三個不同實根,則,故選:B【點睛】易錯點點睛:本題的易錯點為函數(shù)的圖像無限接近直線,即方程只有兩根,另外難點在于方程的變形,即因式分解3、A【解析】,故選A4、C【解析】根據(jù)正弦函數(shù)的圖象和性質,即可得到結論【詳解】解:在[0,2π]內,若sinx,則x,即不等式的解集為(,),故選:C【點睛】本題主要考查利用三角函數(shù)的圖象與性質解不等式,考查數(shù)形結合的思想,屬于基礎題5、A【解析】分析:根據(jù)函數(shù)奇偶性的性質將不等式進行轉化為一般的不等式求解即可詳解:∵,函數(shù)f(x)為奇函數(shù),∴,又f(x)是定義在[?1,1]上的減函數(shù),∴,即,解得∴不等式的解集為故選A點睛:解題的關鍵是根據(jù)函數(shù)的奇偶性將不等式化為或的形式,然后再根據(jù)單調性將函數(shù)不等式化為一般的不等式求解,解題時不要忘了函數(shù)定義域的限制6、D【解析】推導出A1C1⊥BD,A1C1⊥DD1,從而D1O?平面BDD1,由此得到A1C1⊥D1O【詳解】∵O為正方體ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O?平面BDD1,∴A1C1⊥D1O故答案為:D【點睛】本題考查與已知直線垂直的直線的判斷,是中檔題,做題時要認真審題,注意線面垂直的性質的合理運用7、C【解析】在同一坐標系內畫出兩個函數(shù)y1=與y2=|sin2x|的圖象,根據(jù)圖象判斷兩個函數(shù)交點的個數(shù),進而得到函數(shù)零點的個數(shù)【詳解】在同一直角坐標系中分別畫出函數(shù)y1=與y2=|sin2x|的圖象,結合圖象可知兩個函數(shù)的圖象在上有5個交點,故原函數(shù)有5個零點故選C【點睛】判斷函數(shù)零點的個數(shù)時,可轉化為判斷函數(shù)和函數(shù)的圖象的公共點的個數(shù)問題,解題時可畫出兩個函數(shù)的圖象,通過觀察圖象可得結論,體現(xiàn)了數(shù)形結合在解題中的應用8、C【解析】由集合,,結合圖形即可寫出陰影部分表示的集合【詳解】解:根據(jù)條件及圖形,即可得出陰影部分表示的集合為,故選.【點睛】考查列舉法的定義,以及圖表示集合的方法,屬于基礎題.9、C【解析】根據(jù)象限角的定義判斷【詳解】因為,所以是第三象限角故選:C10、D【解析】是奇函數(shù),單調遞增,所以,得,所以,所以,故選D點睛:本題考查函數(shù)的奇偶性和單調性應用.本題中,結合函數(shù)的奇偶性和單調性的特點,轉化得到,分參,結合恒成立的特點,得到,求出參數(shù)范圍二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】利用三角函數(shù)定義可得:,即可求得:,再利用角的正弦、余弦定義計算得解【詳解】由三角函數(shù)定義可得:,解得:,則,所以,,.故答案為:.12、##【解析】根據(jù)三角函數(shù)定義得到,,進而得到答案.【詳解】角的終邊經(jīng)過點,,,.故答案為:.13、(2,0,0)(答案不唯一)【解析】利用空間兩點間的距離求解.【詳解】解:設,因為點A到坐標原點的距離為2,所以,故答案為:(2,0,0)(答案不唯一)14、【解析】根據(jù)題意可得,再根據(jù)對數(shù)運算法則結合時的解析式,即可得答案;【詳解】由可得函數(shù)為奇函數(shù),由可得,故函數(shù)的周期為4,所以,因為,所以..故答案為:.【點睛】本題考查函數(shù)奇偶性及對數(shù)的運算法則,考查邏輯推理能力、運算求解能力.15、或.【解析】根據(jù)冪函數(shù)的性質,結合題意,分類討論,利用單調性列出方程,即可求解.【詳解】由題意,函數(shù),當時,函數(shù)在上為單調遞增函數(shù),可得,解得;當時,顯然不成立;當時,函數(shù)在上為單調遞減函數(shù),可得,解得,綜上可得,或.故答案為:或.16、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范圍為答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)直線與圓交于兩點,即直線與圓相交,轉化成圓心到直線距離小于半徑,利用公式解不等式;(2)過某點求圓的切線,分斜率存在和斜率不存在兩種情況數(shù)形結合分別討論.【詳解】(1)圓心到直線的距離,解得或即k的取值范圍為.(2)當過點P的直線斜率不存在時,即x=2與圓相切,符合題意.當過點P的直線斜率存在時,設其方程為即,由圓心(0,4)到直線的距離等于2,可得解得,故直線方程為綜上所述,圓的切線方程為或【點睛】此題考查直線和圓的位置關系,結合圓的幾何性質處理相交相切,過某點的直線在設其方程的時候一定注意討論斜率是否存在,這是一個易錯點,對邏輯思維能力要求較高,當然也可以考慮直線與二次曲線的常規(guī)解法.18、(1)或,(2)或【解析】(1)根據(jù)集合的交集和并集的定義即可求解;(2)先根據(jù)補集的定義求出,然后再由交集的定義即可求解.【小問1詳解】解:因為或,,所以或,;【小問2詳解】解:因為全集為,或,,所以或,所以或.19、(1),.(2)證明見解析【解析】(1)根據(jù)向量的運算法則,即可求得向量,;(2)由,根據(jù)向量的運算法則,求得,即可求解.【小問1詳解】解:在平行四邊形中,由,,根據(jù)向量的運算法則,可得,.【小問2詳解】解:因為,可得,所以.20、(1);(2);(3)存在,.【解析】(1)根據(jù)對數(shù)函數(shù)的定義域列不等式求解即可.(2)由函數(shù)的單調性和零點存在定理,列不等式求解即可.(3)由對勾函數(shù)的性質可得函數(shù)的單調區(qū)間,利用分類討論的思想討論定義域與單調區(qū)間的關系,再利用函數(shù)的最值存在性問題求出實數(shù)的值.【詳解】(1)由題意,函數(shù)有意義,則滿足,解得,即函數(shù)的定義域為.(2)由,且,可得,且為單調遞增連續(xù)函數(shù),又函數(shù)在上有且僅有一個零點,所以,即,解得,所以實數(shù)的取值范圍是.(3)由,設,則,易證在為單調減函數(shù),在為單調增函數(shù),當時,函數(shù)在上為增函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上為減函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上減函數(shù),在上為增函數(shù),所以最大值為或,解得,符合題意,綜上可得,存在使得函數(shù)的最大值為4.【點睛】本題考查了對數(shù)函數(shù)的定義域問題、零點存在定理、對勾函數(shù)的應用,考查了理解辨析的能力、數(shù)學運算能力、分類討論思想和轉化的數(shù)學思想,屬于一般題目.21、(1)投資債券,投資股票;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)境污染治理技術與工程合同
- 2024年特許連鎖合同:美容護膚品牌連鎖經(jīng)營
- 船舶英語課程設計
- 液壓課程設計集成塊
- 統(tǒng)計表微課程設計
- 箱蓋機械制造課程設計
- 文科課程設計個人日志
- 背景圖高級課程設計
- 物體旋轉課程設計思路
- 體育行業(yè)市場拓展總結
- 一次顯著的性能優(yōu)化
- 《中國近現(xiàn)代史綱要(2023版)》課后習題答案合集匯編
- 春節(jié)期間施工現(xiàn)場安全方案
- 黑龍江省建筑工程施工質量驗收標準DB23-2017
- 自貢鴻鶴化工股份有限公司20萬噸離子膜燒堿等量搬遷升級改造項目
- 醫(yī)院關于成立安全生產(chǎn)領導小組的通知
- 【施工方案】空調百葉施工方案
- ppt模板熱烈歡迎領導蒞臨指導模板課件(15頁PPT)
- 領域驅動設計1
- 腦卒中的腸內營養(yǎng)支持
- 電業(yè)安全工作規(guī)程——電氣部分電業(yè)安全工作規(guī)程
評論
0/150
提交評論