2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第1頁
2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第2頁
2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第3頁
2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第4頁
2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆內(nèi)蒙古自治區(qū)通遼市科左后旗甘旗卡第二高級中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數(shù)據(jù)如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據(jù)表中的數(shù)據(jù)用最小二乘法求得y關(guān)于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.52.直線與橢圓交于兩點(diǎn),以線段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),則此橢圓的離心率為()A B.C. D.3.已知,若對于且都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.若正實(shí)數(shù)、滿足,且不等式有解,則實(shí)數(shù)取值范圍是()A.或 B.或C. D.5.已知點(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,則點(diǎn)的坐標(biāo)為()A. B.C. D.6.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項(xiàng)和B.由滿足對都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對一切,7.(2016新課標(biāo)全國Ⅱ理科)已知F1,F(xiàn)2是雙曲線E:的左,右焦點(diǎn),點(diǎn)M在E上,MF1與軸垂直,sin,則E的離心率為A. B.C. D.28.已知命題:若直線的方向向量與平面的法向量垂直,則;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.9.有一個(gè)圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點(diǎn),則關(guān)于下列命題:①鉛垂的側(cè)面積為150cm2;②一只螞蟻從P點(diǎn)出發(fā)沿鉛垂側(cè)面爬行一周、最終又回到P點(diǎn)的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯(cuò)誤C.①錯(cuò)誤、②正確10.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個(gè)核酸檢測點(diǎn),每個(gè)檢測點(diǎn)需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.611.命題“,”的否定是A, B.,C., D.,12.曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)生到某工廠進(jìn)行勞動實(shí)踐,利用打印技術(shù)制作模型.如圖,該模型為一個(gè)大圓柱中挖去一個(gè)小圓柱后剩余部分(兩個(gè)圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。?4.記為等差數(shù)列{}的前n項(xiàng)和,若,,則=_________.15.雙曲線的離心率為,則它的一個(gè)焦點(diǎn)到一條漸近線的距離為______16.某個(gè)年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學(xué)生中抽取一個(gè)容量為280的樣本,則此樣本中男生人數(shù)為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點(diǎn),且離心率(1)求橢圓的方程;(2)設(shè)點(diǎn)為橢圓的左焦點(diǎn),點(diǎn),過點(diǎn)作的垂線交橢圓于點(diǎn),,連接與交于點(diǎn)①若,求;②求的值18.(12分)已知.(1)求在上的單調(diào)遞增區(qū)間;(2)已知銳角內(nèi)角,,的對邊長分別是,,,若,.求面積的最大值.19.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值20.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.21.(12分)已知圓與直線相切(1)求圓O的標(biāo)準(zhǔn)方程;(2)若線段AB的端點(diǎn)A在圓O上運(yùn)動,端點(diǎn)B的坐標(biāo)是,求線段AB的中點(diǎn)M的軌跡方程22.(10分)已知函數(shù).(I)若曲線在點(diǎn)處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出樣本中心的橫坐標(biāo),代入回歸直線方程,求出樣本中心的縱坐標(biāo),然后求解即可【詳解】因?yàn)?,代入回歸直線方程為,所以,,于是得,解得故選:B2、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點(diǎn)分別為,如下圖:因?yàn)橐跃€段為直徑的圓恰好經(jīng)過橢圓的左焦點(diǎn),所以且,所以,又因?yàn)榈膬A斜角為,所以,所以為等邊三角形,所以,所以,因?yàn)?,所以,所以,所以,所以,故選:D.3、D【解析】根據(jù)題意轉(zhuǎn)化為對于且時(shí),都有恒成立,構(gòu)造函數(shù),轉(zhuǎn)化為時(shí),恒成立,求得的導(dǎo)數(shù),轉(zhuǎn)化為在上恒成立,即可求解.【詳解】由題意,對于且都有成立,不妨設(shè),可得恒成立,即對于且時(shí),都有恒成立,構(gòu)造函數(shù),可轉(zhuǎn)化為,函數(shù)為單調(diào)遞增函數(shù),所以當(dāng)時(shí),恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即實(shí)數(shù)取值范圍為.故選:D4、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實(shí)數(shù)的不等式,解之即可.【詳解】因?yàn)檎龑?shí)數(shù)、滿足,則,即,所以,,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號成立,即的最小值為,因?yàn)椴坏仁接薪猓瑒t,即,即,解得或.故選:A.II卷5、D【解析】根據(jù)空間中射影的定義即可得到答案.【詳解】因?yàn)辄c(diǎn)是點(diǎn)在坐標(biāo)平面內(nèi)的射影,所以的豎坐標(biāo)為0,橫、縱坐標(biāo)與A點(diǎn)的橫、縱坐標(biāo)相同,所以點(diǎn)的坐標(biāo)為.故選:D6、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對于A,由,求出,,,…,推斷:數(shù)列的前項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對于D,屬于歸納推理,但時(shí),結(jié)論不正確,故D不正確.故選:A.7、A【解析】由已知可得,故選A.考點(diǎn):1、雙曲線及其方程;2、雙曲線的離心率.【方法點(diǎn)晴】本題考查雙曲線及其方程、雙曲線的離心率.,涉及方程思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.由已知可得,利用雙曲線的定義和雙曲線的通徑公式,可以降低計(jì)算量,提高解題速度.8、D【解析】先判斷出p、q的真假,再分別判斷四個(gè)選項(xiàng)的真假.【詳解】因?yàn)椤叭糁本€的方向向量與平面的法向量垂直,則或”,所以p為假命題;對于等軸雙曲線,,所以離心率為,所以q為真命題.所以假命題,故A錯(cuò)誤;為假命題,故B錯(cuò)誤;為假命題,故C錯(cuò)誤;為真命題,故D正確.故選:D9、C【解析】根據(jù)圓錐的側(cè)面展開圖為扇形,由扇形的面積公式計(jì)算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計(jì)算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側(cè)面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯(cuò)誤.將其側(cè)面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C10、B【解析】分(甲乙)、(丙?。┰偻唤M和不在同一組兩種情況討論,按照分類、分步計(jì)數(shù)原理計(jì)算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙?。┎辉谕唤M,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個(gè)核酸檢測點(diǎn),則有種,綜上可得一共有種安排方法,故選:B11、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題12、C【解析】由曲線方程直接求離心率即可.【詳解】由題設(shè),,,∴離心率.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案為:4500.14、18【解析】根據(jù)等差數(shù)列通項(xiàng)和前n項(xiàng)和公式即可得到結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,由,得,解得,所以故答案為:1815、【解析】根據(jù)雙曲線離心率為,可得的值,進(jìn)而可得雙曲線焦點(diǎn)到一條漸近線的距離.【詳解】由雙曲線離心率為,得,即,故雙曲線方程為,焦點(diǎn)坐標(biāo)為,漸近線方程為:,故焦點(diǎn)到漸近線的距離為,故答案為:.16、160【解析】∵某個(gè)年級共有980人,要從中抽取280人,∴抽取比例為,∴此樣本中男生人數(shù)為,故答案為160.考點(diǎn):本題考查了分層抽樣的應(yīng)用點(diǎn)評:掌握分層抽樣的概念是解決此類問題的關(guān)鍵,屬基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標(biāo),從而可求出;②當(dāng)時(shí),,當(dāng)時(shí),直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系,結(jié)合中點(diǎn)坐標(biāo)公式可得中點(diǎn)的坐標(biāo),再將直線的方程與方程聯(lián)立,求出點(diǎn)的坐標(biāo),從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當(dāng)時(shí),直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當(dāng)時(shí),當(dāng)時(shí),直線過點(diǎn)且與直線垂直,則直線方程為由得顯然設(shè),,則,則中點(diǎn)直線的方程為,由得所以綜上的值為18、(1);(2).【解析】(1)首先根據(jù)三角函數(shù)恒等變換得到,再求其單調(diào)增區(qū)間即可.(2)根據(jù)得到,根據(jù)余弦定理和基本不等式得到,結(jié)合三角形面積公式計(jì)算即可.【小問1詳解】由題意.由,得,令,得,所以在上的單調(diào)遞增區(qū)間是【小問2詳解】因?yàn)椋?,得,又C是銳角,所以,由余弦定理:,得,所以,且當(dāng)時(shí)等號成立所以,故面積最大值為19、(1);(2)最大值為,最小值為【解析】(1)求出導(dǎo)函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進(jìn)而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當(dāng)變化時(shí),與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.20、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導(dǎo),再根據(jù)導(dǎo)數(shù)的正負(fù)求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時(shí),,當(dāng)時(shí),令,再利用導(dǎo)數(shù)求出其最小值大于零即可【小問1詳解】的定義域?yàn)楫?dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),令,解得;令,解得;綜上所述:當(dāng)時(shí),在上單調(diào)遞增,無減區(qū)間;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當(dāng)時(shí),,,當(dāng)時(shí),令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即21、(1)(2)【解析】(1)由圓心到直線的距離等于半徑即可求出.(2)由相關(guān)點(diǎn)法即可求出軌跡方程.【小問1詳解】已知圓與直線相切,所以圓心到直線的距離為半徑.所以,所以圓O的標(biāo)準(zhǔn)方程為:【小問2詳解】設(shè)因?yàn)锳B的中點(diǎn)是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論