湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題含解析_第1頁
湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題含解析_第2頁
湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題含解析_第3頁
湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題含解析_第4頁
湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武昌市2025屆高一數(shù)學第一學期期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若且,則下列不等式中一定成立的是A. B.C. D.2.冪函數(shù)在區(qū)間上單調遞增,且,則的值()A.恒大于0 B.恒小于0C.等于0 D.無法判斷3.在一次數(shù)學實驗中,某同學運用圖形計算器采集到如下一組數(shù)據(jù):x01.002.03.0y0.240.5112.023.988.02在四個函數(shù)模型(a,b為待定系數(shù))中,最能反映,y函數(shù)關系的是().A. B.C. D.4.已知直線與平行,則實數(shù)的取值是A.-1或2 B.0或1C.-1 D.25.函數(shù)的零點所在的一個區(qū)間是()A. B.C. D.6.已知,,,則、、的大小關系為()A. B.C. D.7.已知函數(shù)若關于的方程有6個根,則的取值范圍為()A. B.C. D.8.正方形中,點,分別是,的中點,那么A. B.C. D.9.已知函數(shù),若,,,則()A. B.C. D.10.設,為平面向量,則“存在實數(shù),使得”是“向量,共線”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)若,則實數(shù)___________.12.若,,且,則的最小值為________13.若“”是“”的必要不充分條件,則實數(shù)的取值范圍為___________.14.已知函數(shù),則函數(shù)的所有零點之和為________15.已知函數(shù)的零點為1,則實數(shù)a的值為______16.函數(shù)的定義域是____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐P-ABCD中,側面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB的中點,E為AD的中點,過A,D,N的平面交PC于點M.求證:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.18.已知直線l過點和直線:平行,圓O的方程為,直線l與圓O交于B,C兩點.(1)求直線l的方程;(2)求直線l被圓O所截得的弦長.19.已知函數(shù)圖象的一條對稱軸方程為,且其圖象上相鄰兩個零點的距離為.(1)求的解析式;(2)若對,不等式恒成立,求實數(shù)m的取值范圍.20.在直角坐標平面中,角α的始邊為x軸正半軸,終邊過點(-2,y),且tana=-,分別求y,sinα,cosα的值21.已知函數(shù)()在同一半周期內的圖象過點,,,其中為坐標原點,為函數(shù)圖象的最高點,為函數(shù)的圖象與軸正半軸的交點,為等腰直角三角形.(1)求的值;(2)將繞點按逆時針方向旋轉角(),得到,若點和點都恰好落在曲線()上,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用不等式的性質逐個檢驗即可得到答案.【詳解】A,a>b且c∈R,當c小于等于0時不等式不成立,故錯誤;Ba,b,c∈R,且a>b,可得a﹣b>0,當c=0時不等式不成立,故錯誤;,C,舉反例,a=2,b=-1滿足a>b,但不滿足,故錯誤;D,將不等式化簡即可得到a>b,成立,故選D.【點睛】本題主要考查不等式的性質以及排除法的應用,屬于簡單題.用特例代替題設所給的一般性條件,得出特殊結論,然后對各個選項進行檢驗,從而做出正確的判斷,這種方法叫做特殊法.若結果為定值,則可采用此法.特殊法是“小題小做”的重要策略.常用的特例有特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等2、A【解析】由已知條件求出的值,則可得冪函數(shù)的解析式,再利用冪函數(shù)的性質判斷即可【詳解】由函數(shù)是冪函數(shù),可得,解得或當時,;當時,因為函數(shù)在上是單調遞增函數(shù),故又,所以,所以,則故選:A3、B【解析】由題中表格數(shù)據(jù)畫出散點圖,由圖觀察實驗室指數(shù)型函數(shù)圖象【詳解】由題中表格數(shù)據(jù)畫出散點圖,如圖所示,觀察圖象,類似于指數(shù)函數(shù)對于A,是一次函數(shù),圖象是一條直線,所以A錯誤,對于B,是指數(shù)型函數(shù),所以B正確,對于C,是對數(shù)型函數(shù),由于表中的取到了負數(shù),所以C錯誤,對于D,是反比例型函數(shù),圖象是雙曲線,所以D錯誤,故選:B4、C【解析】因為兩直線的斜率都存在,由與平行得,當時,兩直線重合,,故選C.5、B【解析】判斷函數(shù)的單調性,再借助零點存在性定理判斷作答.【詳解】函數(shù)在R上單調遞增,而,,所以函數(shù)的零點所在區(qū)間為.故選:B6、C【解析】利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調性結合中間值法可得出、、的大小關系.【詳解】因為,,,因此,.故選:C.7、B【解析】作出函數(shù)的圖象,令,則原方程可化為在上有2個不相等的實根,再數(shù)形結合得解.【詳解】作出函數(shù)的圖象如圖所示.令,則可化為,要使關于的方程有6個根,數(shù)形結合知需方程在上有2個不相等的實根,,不妨設,,則解得,故的取值范圍為,故選B【點睛】形如的函數(shù)的零點問題與函數(shù)圖象結合較為緊密,處理問題的基礎和關鍵是作出,的圖象.若已知零點個數(shù)求參數(shù)的范圍,通常的做法是令,先估計關于的方程的解的個數(shù),再根據(jù)的圖象特點,觀察直線與圖象的交點個數(shù),進而確定參數(shù)的范圍8、D【解析】由題意點,分別是,中點,求出,,然后求出向量即得【詳解】解:因為點是的中點,所以,點得是的中點,所以,所以,故選:【點睛】本題考查向量加減混合運算及其幾何意義,注意中點關系與向量的方向,考查基本知識的應用。屬于基礎題。9、A【解析】可判斷在單調遞增,根據(jù)單調性即可判斷.【詳解】當時,單調遞增,,,,.故選:A.10、A【解析】結合充分條件和必要條件的概念以及向量共線即可判斷.【詳解】充分性:由共線定理即可判斷充分性成立;必要性:若,,則向量,共線,但不存在實數(shù),使得,即必要性不成立.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】先計算,再計算即得解.【詳解】解:,所以.故答案為:212、4【解析】應用基本不等式“1”的代換求最小值即可,注意等號成立的條件.【詳解】由題設,知:當且僅當時等號成立.故答案為:4.13、##【解析】由題意,根據(jù)必要不充分條件可得?,從而建立不等關系即可求解.【詳解】解:不等式的解集為,不等式的解集為,因為“”是“”的必要不充分條件,所以?,所以,解得,所以實數(shù)的取值范圍為,故答案為:.14、0【解析】令,得到,在同一坐標系中作出函數(shù)的圖象,利用數(shù)形結合法求解.【詳解】因為函數(shù),所以的對稱中心是,令,得,在同一坐標系中作出函數(shù)的圖象,如圖所示:由圖象知:兩個函數(shù)圖象有8個交點,即函數(shù)有8個零點由對稱性可知:零點之和為0,故答案為:015、【解析】利用求得的值.【詳解】由已知得,即,解得.故答案為:【點睛】本小題主要考查函數(shù)零點問題,屬于基礎題.16、【解析】利用對數(shù)函數(shù)的定義域列出不等式組即可求解.【詳解】由題意可得,解得,所以函數(shù)的定義域為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見證明(2)見證明(3)見證明【解析】(1)先證明四邊形DENM為平行四邊形,利用線面平行的判定定理即可得到證明;(2)先證明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可證得PB⊥平面ADMN,利用面面垂直的判定定理即可得到證明.【詳解】(1)∵AD∥BC,BC?平面PBC,AD?平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N為PB的中點,∴M為PC的中點,∴MN=BC∵E為AD中點,DE=AD=BC=MN,∴DEMN,∴四邊形DENM為平行四邊形,∴EN∥DM.又∵EN?平面PDC,DM?平面PDC,∴EN∥平面PDC(2)∵四邊形ABCD是邊長為2的菱形,且∠BAD=60°,E為AD中點,∴BE⊥AD.又∵PE⊥AD,PE∩BE=E,∴AD⊥平面PEB.∵AD∥BC,∴BC⊥平面PEB(3)由(2)知AD⊥PB又∵PA=AB,且N為PB的中點,∴AN⊥PB∵AD∩AN=A,∴PB⊥平面ADMN.又∵PB?平面PBC,∴平面PBC⊥平面ADMN.【點睛】本題考查線面與平面垂直的判定,直線與平面平行的判定,直線與平面垂直的判定,屬于基本知識的考查18、(1)(2)【解析】(1)通過直線l和直線:平行,得到斜率,再由直線l過點,用點斜式寫出方程.(2)先求出圓心O到直線l的距離,再根據(jù)弦長公式求解.【詳解】(1),,又因為直線l過點∴直線l的方程為:,即(2)因為圓心O到直線l的距離為,所以【點睛】本題主要考查了直線方程的求法和直線與圓的位置關系中的弦長問題,還考查了運算求解的能力,屬于中檔題.19、(1)(2)【解析】(1)由題意可得周期為,則可求出的值,再由一條對稱軸方程為,可得,可求出的值,從而可求得解析式,(2)由題意得對恒成立,所以利用三角函數(shù)的性質求出即可,從而可求出實數(shù)m的取值范圍【小問1詳解】因為圖象上相鄰兩個零點的距離為,所以周期為,所以,得,所以,因為圖象的一條對稱軸方程為,所以,即,所以,因為,所以,所以【小問2詳解】由(1)得對恒成立,因為,所以,所以,則,所以,解得,所以實數(shù)m的取值范圍為20、.【解析】利用直接求出y的值;然后直接構造直角三角形利用即可得解【詳解】解:∵角α的始邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論