版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省通許縣麗星中學2025屆高二數學第一學期期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋擲兩枚硬幣,若記出現“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.2.已知點,,直線與線段相交,則實數的取值范圍是()A.或 B.或C. D.3.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.4.正方體中,E、F分別是與的中點,則直線ED與所成角的余弦值是()A. B.C. D.5.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.6.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.曲線:在點處的切線方程為A. B.C. D.8.,則與分別為()A.與 B.與C.與0 D.0與9.數列滿足且,則的值是()A.1 B.4C.-3 D.610.在等比數列中,若,,則()A. B.C. D.11.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,n的最大值是()A.8 B.9C.10 D.1112.在三棱錐中,,,,若,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為2的正方體中,點P是直線上的一個動點,點Q在平面上,則的最小值為________.14.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.15.已知,若共線,m+n=__.16.已知數列,點在函數的圖象上,則數列的前10項和是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,從下列兩個條件中選擇一個使得數列{an}成等比數列.條件1:數列{f(an)}是首項為4,公比為2的等比數列;條件2:數列{f(an)}是首項為4,公差為2的等差數列.(1)求數列{an}的通項公式;(2)求數列的前n項和.18.(12分)已知,命題p:對任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍19.(12分)已知函數.其中e為然對數的底數(1)若,求函數的單調區(qū)間;(2)若,討論函數的零點個數20.(12分)已知拋物線C的焦點為,N為拋物線上一點,且(1)求拋物線C的方程;(2)過點F且斜率為k的直線l與C交于A,B兩點,,求直線l的方程21.(12分)已知圓心為的圓過原點,且直線與圓相切于點.(1)求圓的方程;(2)已知過點的直線的斜率為,且直線與圓相交于兩點.①若,求弦的長;②若圓上存在點,使得成立,求直線的斜率.22.(10分)已知動圓過點且動圓內切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線方程;(2)若、是曲線上兩點,點滿足求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計算公式,把,,算出來,判斷四個選項的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A2、B【解析】由可求出直線過定點,作出圖象,求出和,數形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數的取值范圍是或,故選:B3、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.4、A【解析】以A為原點建立空間直角坐標系,求出E,F,D,D1點的坐標,利用向量求法求解【詳解】如圖,以A為原點建立空間直角坐標系,設正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點睛】本題考查異面直線所成角的求法,屬于基礎題.5、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.6、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當且僅當,即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A7、A【解析】因為,所以曲線在點(1,0)處的切線的斜率為,所以切線方程為,即,選A8、C【解析】利用正弦函數和常數導數公式,結合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C9、A【解析】根據題意,由于,可知數列是公差為-3的等差數列,則可知d=-3,由于=,故選A10、D【解析】由等比數列的性質得,化簡,代入數值求解.【詳解】因為數列是等比數列,所以,由題意,所以.故選:D11、B【解析】先求出數列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數列是以1為首項,2為公差的等差數列所以因為是以1為首項,2為公比的等比數列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關鍵點睛:本題的關鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.12、B【解析】根據空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】數形結合分析出的最小值為點到平面的距離,然后利用等體積法求出距離即可.【詳解】因為,且平面,平面,所以平面,所以的最小值為點到平面的距離,設到平面的距離為,則,所以,即,解得,故答案為:.14、3【解析】先求出拋物線的焦點坐標和準線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:315、【解析】根據空間向量平行的坐標運算求出m,n,進而求得答案.【詳解】由于,因為,所以存在,使得,于是,則.故答案為:.16、【解析】將點代入可得,從而得,再由裂項相消法可求解.【詳解】由題意有,所以,所以數列的前10項和為:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據所給的條件分別計算后即可判斷,再通過滿足題意的求出通項;(2)由(1)可得,再通過錯位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡得.18、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據題設可得真或真,后者可用參變分離求出的取值范圍,結合(1)可求的取值范圍.【小問1詳解】當p為真命題時,當時,不等式顯然成立;當時,解得,故a取值范圍為.【小問2詳解】當q為真命題時,問題等價于存在,使得不等式成立,即,∵,當且僅當x=1時等號成立,∴因為為真命題,所以真或真,故a的取值范圍是19、(1)單調遞減區(qū)間為,單調遞增區(qū)間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數大于零求增區(qū)間,令導數小于零求減區(qū)間;(2)求導數,分、、a>2討論函數f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區(qū)間為,單調遞增區(qū)間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數的幾何意義,往往與解析幾何、微積分相聯系.(2)利用導數求函數的單調區(qū)間,判斷單調性;已知單調性,求參數.(3)利用導數求函數的最值(極值),解決生活中的優(yōu)化問題.(4)考查數形結合思想的應用20、(1)(2)或【解析】(1)拋物線的方程為,利用拋物線的定義求出點N,代入拋物線方程即可求解.(2)設直線的方程為,將直線與拋物線方程聯立,利用韋達定理以及焦半徑公式可得或,即求.【小問1詳解】拋物線的方程為,設,依題意,由拋物線定義,即.所以,又由,得,解得(舍去),所以拋物線的方程為.【小問2詳解】由(1)得,設直線的方程為,,,由,得.因為,故所以.由題設知,解得或,因此直線方程為或.21、(1);(2)①,②.【解析】(1)圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,聯立求圓心,進而得半徑即可;(2)①垂徑定理即可求弦長;②圓上存在點,使得成立,即四邊形是平行四邊形,又,有都是等邊三角形,進而得圓心到直線的距離為,列方程求解即可.試題解析:(1)由已知得,圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,由得圓心,所以半徑,所以圓的方程為;(2)①由題意知,直線的方程為,即,∴圓心到直線的距離為,∴;②∵圓上存在點,使得成立,∴四邊形是平行四邊形,又,∴都是等邊三角形,∴圓心到直線的距離為,又直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例匯編員工管理篇十篇
- 單位管理制度呈現匯編【人事管理】
- 專題二 民主與法治(精講課件)中考道德與法治一輪復習 課件
- 【課件】寒假是用來超越的!課件 2024-2025學年高中上學期寒假學習和生活指導班會
- 第5單元 走向近代(高頻選擇題50題)(解析版)
- 中北大學課件電工技術
- 《皮膚性病學疥瘡》課件
- 《電子產品技術文件》課件
- 母親節(jié) 愛的呈現
- 汽車行業(yè)洞察與展望
- 2025年大學華西醫(yī)院運營管理部招考聘用3人管理單位筆試遴選500模擬題附帶答案詳解
- 2025年放射科工作計劃
- 2024年中國干粉涂料市場調查研究報告
- 2024年副班主任工作總結(3篇)
- 課題申報書:古滇青銅文化基因圖譜構建及活態(tài)深化研究
- 統(tǒng)編版2024-2025學年第一學期四年級語文期末學業(yè)質量監(jiān)測試卷(含答案)
- 2024年城鄉(xiāng)學校結對幫扶工作總結范例(3篇)
- 房地產法律風險防范手冊
- 《監(jiān)考人員培訓》課件
- 期末綜合測試卷(試題)-2024-2025學年四年級上冊數學人教版
- 分布式光伏發(fā)電項目計劃書
評論
0/150
提交評論