版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆太原師院附中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.2.已知數(shù)列的通項(xiàng)公式為,則()A.12 B.14C.16 D.183.已知點(diǎn)是橢圓上一點(diǎn),點(diǎn),則的最小值為A. B.C. D.4.雙曲線的漸近線的斜率是()A.1 B.C. D.5.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.6.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.27.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用8.已知數(shù)列中,,則()A.2 B.C. D.9.在平面直角坐標(biāo)系中,雙曲線的右焦點(diǎn)為,過雙曲線上一點(diǎn)作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.10.對任意實(shí)數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)11.以軸為對稱軸,拋物線通徑的長為8,頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線的方程是()A. B.C.或 D.或12.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)是拋物線上的兩點(diǎn),,點(diǎn)是拋物線的焦點(diǎn),若,則的值為__________14.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________15.從1,2,3,4,5中任取兩個(gè)不同的數(shù),其中一個(gè)作為對數(shù)的底數(shù)a,另一個(gè)作為對數(shù)的真數(shù)b.則的概率為______.16.已知O為坐標(biāo)原點(diǎn),,是拋物線上的兩點(diǎn),且滿足,則______;若OM垂直AB于點(diǎn)M,且為定值,則點(diǎn)Q的坐標(biāo)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)隨著生活條件的改善,人們健身意識(shí)的增強(qiáng),健身器械比較暢銷,某商家為了解某種健身器械如何定價(jià)可以獲得最大利潤,現(xiàn)對這種健身器械進(jìn)行試銷售.統(tǒng)計(jì)后得到其單價(jià)x(單位:百元)與銷量y(單位:個(gè))的相關(guān)數(shù)據(jù)如下表:單價(jià)x(百元/個(gè))3035404550日銷售量y(個(gè))1401301109080(1)已知銷量y與單價(jià)x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若每個(gè)健身器械的成本為25百元,試銷售結(jié)束后,請利用(1)中所求的線性回歸方程確定單價(jià)為多少百元時(shí),銷售利潤最大?(結(jié)果保留到整數(shù)),附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.參考數(shù)據(jù):.18.(12分)已知命題:對任意實(shí)數(shù)都有恒成立;命題:關(guān)于的方程有實(shí)數(shù)根(1)若命題為假命題,求實(shí)數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍19.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點(diǎn),P為線段上的動(dòng)點(diǎn)(1)求證:;(2)當(dāng)點(diǎn)P滿足時(shí),求證:直線平面;(3)是否存在點(diǎn)P,使直線與平面所成角的正弦值為?若存在,試確定P點(diǎn)的位置;若不存在,請說明理由20.(12分)如圖,在空間直角坐標(biāo)系中有長方體,且,,點(diǎn)E在棱AB上移動(dòng).(1)證明:;(2)當(dāng)E為AB的中點(diǎn)時(shí),求直線AC與平面所成角的正弦值.21.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)當(dāng)為何值時(shí),最大,并求的最大值.22.(10分)已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高所在直線方程為.求:(1)頂點(diǎn)的坐標(biāo);(2)直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先由圖像分析出的正負(fù),直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調(diào)遞減,在區(qū)間(0,2)上單調(diào)遞增,即當(dāng)時(shí),;當(dāng)x∈(0,2)時(shí),.因?yàn)榭苫癁榛?,解得?<x<2或x<0,所以不等式的解集為.故選:C2、D【解析】利用給定的通項(xiàng)公式直接計(jì)算即得.【詳解】因數(shù)列的通項(xiàng)公式為,則有,所以.故選:D3、D【解析】設(shè),則,.所以當(dāng)時(shí),的最小值為.故選D.4、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B5、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.6、B【解析】根據(jù)等比數(shù)列的性質(zhì)計(jì)算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項(xiàng)的符號(hào)相同,所以,即.故選:B7、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對,由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.8、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.9、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負(fù)值舍去).故選:A.10、A【解析】判斷直線恒過定點(diǎn),可知定點(diǎn)在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點(diǎn),將點(diǎn)代入圓的方程可得,則點(diǎn)在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.11、C【解析】由分焦點(diǎn)在軸的正半軸上和焦點(diǎn)在軸的負(fù)半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點(diǎn)在原點(diǎn),以軸為對稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點(diǎn)在軸的正半軸上時(shí),設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點(diǎn)在軸的負(fù)半軸上時(shí),設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.12、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由拋物線的定義根據(jù)題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據(jù)題設(shè)可得,則(舍去負(fù)值),故,故填.【點(diǎn)睛】本題考查拋物線的定義和性質(zhì),利用已知相等關(guān)系求解拋物線方程,然后求解已知點(diǎn)的縱坐標(biāo),解題中需要熟練拋物的定義和性質(zhì),靈活應(yīng)用.14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、##【解析】利用列舉法,結(jié)合古典概型概率計(jì)算公式以及對數(shù)的知識(shí)求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:16、①.-24②.【解析】由拋物線的方程及數(shù)量積的運(yùn)算可求出,設(shè)直線AB的方程為,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系可求出,由圓的定義求出圓心即可.【詳解】由,即解得或(舍去).設(shè)直線AB的方程為.由,消去x并整理得,.又,,直線AB恒過定點(diǎn)N(6,0),OM垂直AB于點(diǎn)M,點(diǎn)M在以O(shè)N為直徑圓上.|MQ|為定值,點(diǎn)Q為該圓的圓心,又即Q(3,0).故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)確定單價(jià)為50百元時(shí),銷售利潤最大.【解析】(1)根據(jù)參考公式和數(shù)據(jù)求出,進(jìn)而求出線性回歸方程;(2)設(shè)出定價(jià),結(jié)合(1)求出利潤,進(jìn)而通過二次函數(shù)的性質(zhì)求得答案.【小問1詳解】由題意,,則,,結(jié)合參考數(shù)據(jù)可得,,所以線性回歸方程為.【小問2詳解】設(shè)定價(jià)為x百元,利潤為,則,由題意,則(百元)時(shí),最大.故確定單價(jià)為50百元時(shí),銷售利潤最大.18、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時(shí)參數(shù)的范圍,則可得當(dāng)命題為假命題,實(shí)數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實(shí)數(shù)都有恒成立或;命題為真命題:關(guān)于的方程有實(shí)數(shù)根;(1)命題為假命題,則實(shí)數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實(shí)數(shù)的取值范圍為19、(1)見解析(2)見解析(3)存在點(diǎn)P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點(diǎn),,,所在直線為軸,軸,軸建立如圖空間直角坐標(biāo)系,因?yàn)?,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小?詳解】設(shè)點(diǎn)坐標(biāo)為,則,∵,∴,,,解得:,,,即設(shè)平面的一個(gè)法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問3詳解】設(shè),則,設(shè)的一個(gè)法向量為∵,,∴,解,令,則,,得設(shè)與平面所成角為,則.解得:或(舍).故存在點(diǎn)P,,即點(diǎn)P為距的第一個(gè)5等分點(diǎn)20、(1)證明見解析(2)【解析】(1)設(shè),求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設(shè),,,,;【小問2詳解】當(dāng)為的中點(diǎn)時(shí),,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角為,則直線與平面所成角的正弦值為:21、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項(xiàng)公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因?yàn)?所以,解得,所以;【小問2詳解】,當(dāng)或7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國美術(shù)學(xué)院《工業(yè)產(chǎn)品形態(tài)與設(shè)計(jì)元素》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)關(guān)于緊急信息報(bào)送制度
- 浙江安防職業(yè)技術(shù)學(xué)院《三維網(wǎng)絡(luò)游戲綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 全球價(jià)值鏈重構(gòu)與中國產(chǎn)業(yè)升級(jí)策略
- 數(shù)學(xué)知識(shí)解析
- 專業(yè)案例(暖通空調(diào)專業(yè))-注冊共用設(shè)備工程師(暖通空調(diào))《專業(yè)案例》真題匯編3
- 房地產(chǎn)經(jīng)紀(jì)綜合能力-《房地產(chǎn)經(jīng)紀(jì)綜合能力》押題密卷1
- 年終項(xiàng)目報(bào)告
- 畢業(yè)晚會(huì)串詞
- 春節(jié)發(fā)個(gè)閨蜜的祝福語短信
- 化工廠拆除施工方案
- 新能源汽車課件
- 人教版2024-2025學(xué)年七年級(jí)數(shù)學(xué)上冊3.2代數(shù)式(壓軸題綜合測試卷)專題特訓(xùn)(學(xué)生版+解析)
- 17個(gè)崗位安全操作規(guī)程手冊
- 骨科特殊檢查-肩部特殊檢查(康復(fù)評定技術(shù))
- 醫(yī)療器械設(shè)備采購項(xiàng)目實(shí)施方案
- 人教版數(shù)學(xué)七年級(jí)上冊3.3解一元一次方程去括號(hào)教學(xué)設(shè)計(jì)
- MATLAB與電力系統(tǒng)仿真
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 2024-2030年中國干燥設(shè)備行業(yè)研發(fā)創(chuàng)新狀況及發(fā)展行情監(jiān)測研究報(bào)告
- 科技創(chuàng)新引領(lǐng)產(chǎn)業(yè)創(chuàng)新專題研究報(bào)告
評論
0/150
提交評論