2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省十四校數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.2.若圓上至少有三個點到直線的距離為1,則半徑的取值范圍是()A. B.C. D.3.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.4.命題“若α=,則tanα=1”的逆否命題是A.若α≠,則tanα≠1 B.若α=,則tanα≠1C.若tanα≠1,則α≠ D.若tanα≠1,則α=5.設(shè)是周期為2的奇函數(shù),當(dāng)時,,則()A. B.C. D.6.函數(shù)在上的最小值為()A. B.C.-1 D.7.已知集合,,則()A. B.C. D.8.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.9.設(shè),則A.2 B.3C.4 D.510.已知點是拋物線上的一點,F是拋物線的焦點,則點M到F的距離等于()A.6 B.5C.4 D.211.橢圓與雙曲線有公共的焦點、,與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.12.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長為,那么,這個圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.14.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進(jìn)口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進(jìn)出口總額x,y滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達(dá)到5千億元,預(yù)計該年進(jìn)口總額為______千億元15.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點,其中為左焦點,P是與在第一象限的公共點.線段的垂直平分線經(jīng)過坐標(biāo)原點,則的最小值為_____________.16.在空間直角坐標(biāo)系中,點到x軸的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實數(shù)a的取值范圍18.(12分)已知圓內(nèi)有一點,過點作直線交圓于、兩點(1)當(dāng)經(jīng)過圓心時,求直線的方程;(2)當(dāng)弦的長為時,求直線的方程19.(12分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點B(,0)任作直線l交圓A于點C、D,過點B作與AD平行的直線交AC于點E.(1)求動點E的軌跡方程;(2)設(shè)動點E的軌跡與y軸正半軸交于點P,過點P且斜率為k1,k2的兩直線交動點E的軌跡于M、N兩點(異于點P),若,證明:直線MN過定點.20.(12分)在復(fù)數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復(fù)平面內(nèi),這六個根對應(yīng)的點分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積21.(12分)已知函數(shù),且)的圖象經(jīng)過點和

.(1)求實數(shù),的值;(2)若,求數(shù)列前項和

.22.(10分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點為焦點,且離心率為的橢圓方程;(2)過點,且漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,不妨設(shè),由橢圓和雙曲線的定義可得,所以,,設(shè),因為,則,由勾股定理得,即,整理得,故.故選:A.2、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時,圓上恰有三點到直線的距離為,當(dāng)圓的半徑時,圓上恰有四個點到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個點到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.3、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題4、C【解析】因為“若,則”的逆否命題為“若,則”,所以“若α=,則tanα=1”的逆否命題是“若tanα≠1,則α≠”.【點評】本題考查了“若p,則q”形式的命題的逆命題、否命題與逆否命題,考查分析問題的能力.5、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類題型,求函數(shù)值時,一般先用周期性化自變量到已知區(qū)間關(guān)于原點對稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值6、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因為,所以,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,故.故選:D.7、A【解析】由已知得,因為,所以,故選A8、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C9、B【解析】利用復(fù)數(shù)的除法運算求出,進(jìn)而可得到.【詳解】,則,故,選B.【點睛】本題考查了復(fù)數(shù)的四則運算,考查了復(fù)數(shù)的模,屬于基礎(chǔ)題10、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.11、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實軸長為,因為與在第一象限內(nèi)交于點,是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.12、A【解析】由垂徑定理,根據(jù)弦長的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標(biāo)準(zhǔn)方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長,設(shè)圓半徑為r,則故r=2則圓的標(biāo)準(zhǔn)方程為故選:A【點睛】本題主要考查直線與圓的位置關(guān)系和圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得:考點:等差數(shù)列通項14、①.1.6;②.3.65.【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進(jìn)口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當(dāng)時,即,解得,所以,預(yù)計該年進(jìn)口總額為千億元.故答案為:1.6;3.6515、##4.5【解析】設(shè)為右焦點,半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設(shè)為右焦點,半焦距為,,由題意,,則,所以,即,故,當(dāng)且僅當(dāng)時取等,所以,故答案為:.16、【解析】由空間直角坐標(biāo)系中點到軸的距離為計算可得【詳解】解:空間直角坐標(biāo)系中,點到軸的距離為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域為,;【小問2詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域為,因為存在,使成立,所以,,所以,綜上,【點睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問題,考查了計算能力及數(shù)據(jù)分析能力,對不等式恒成立合理變形轉(zhuǎn)化為求最值是解題關(guān)鍵.18、(1);(2)或【解析】(1)求得圓心坐標(biāo),由點斜式求得直線點的方程.(2)分成直線斜率存在和不存在兩種情況進(jìn)行分類討論,由此求得直線的方程.【詳解】(1)圓心坐標(biāo)為(1,0),,,整理得(2)圓的半徑為3,當(dāng)直線的斜率存在時,設(shè)直線的方程為,整理得,圓心到直線的距離為,解得,代入整理得當(dāng)直線的斜率不存在時,直線的方程為,經(jīng)檢驗符合題意∴直線的方程為或19、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據(jù)橢圓定義即可判斷點E的軌跡,從而寫出其軌跡方程;(2)設(shè),當(dāng)直線MN斜率存在時,設(shè)直線MN的方程為:,聯(lián)立MN方程和E的軌跡方程得根與系數(shù)的關(guān)系,根據(jù)解出k與m的關(guān)系即可以判斷MN過定點;最后再考慮MN斜率不存在時是否也過該定點即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),圓的半徑r=8,,,可得,,,由橢圓的定義可得:點E的軌跡是以A(,0)、B(,0)為焦點,2a=8的橢圓,即a=4,c=,∴=16-7=9,∴動點E的軌跡方程為;【小問2詳解】由(1)知,P(0,3),設(shè),當(dāng)直線MN的斜率存在時,設(shè)直線MN的方程為:,由,可得,∴,,∵,∴,即,整理可得:,∴k=m+3或m=3,當(dāng)m=3時,直線MN的方程為:,此時過點P(0,3)不符合題意,∴k=m+3,∴直線MN的方程為:此時直線MN過點(-1,-3),當(dāng)直線MN的斜率不存在時,,,解得,此時直線MN的方程為:,過點(-1,-3),綜上所述:直線MN過定點(-1,-3).20、(1)(2)【解析】(1)原式可因式分解為,令,設(shè)可求解出的兩個虛根,同理可求解的兩個虛根,即得解;(2)六個點構(gòu)成的圖形為正六邊形,邊長為1,計算即可【小問1詳解】由題意,當(dāng)時,設(shè)故,所以解得:,即當(dāng)時,設(shè)故所以解得:,即故:【小問2詳解】六個根對應(yīng)的點分別為A,B,C,D,E,F(xiàn),其中在復(fù)平面中描出這六個點如圖所示:六個點構(gòu)成的圖形為正六邊形,邊長為1故21、(1),(2)【解析】(1)將A、B點坐標(biāo)代入,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論