




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省北票市尹湛納希高級中學(xué)2023-2024學(xué)年高中畢業(yè)班階段性測試(四)數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,是橢圓的左、右焦點(diǎn),過的直線交橢圓于兩點(diǎn).若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.2.若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.75.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.6.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知i為虛數(shù)單位,則()A. B. C. D.8.已知函數(shù),若所有點(diǎn),所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.9.若集合,,則()A. B. C. D.10.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-111.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.12.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.已知,則______,______.14.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).15.已知,,,的夾角為30°,,則_________.16.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.18.(12分)如圖,在三棱錐中,平面平面,,.點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.19.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點(diǎn)為曲線所在圓錐曲線的焦點(diǎn),點(diǎn)為曲線所在圓錐曲線的焦點(diǎn).(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點(diǎn),求證:弦的中點(diǎn)必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點(diǎn)交曲線于點(diǎn),求面積的最大值.20.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點(diǎn),求證:平面;(2)若,求四棱錐的體積.21.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.22.(10分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.2、B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對應(yīng)的點(diǎn)在第二象限,得,則.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】
先用復(fù)數(shù)的除法運(yùn)算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的基本概念和基本運(yùn)算,屬于基礎(chǔ)題.4、C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.5、D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.6、D【解析】
通過列舉法可求解,如兩角分別為時(shí)【詳解】當(dāng)時(shí),,但,故充分條件推不出;當(dāng)時(shí),,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題7、A【解析】
根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.8、D【解析】
依題意,可得,在上單調(diào)遞增,于是可得在上的值域?yàn)?,繼而可得,解之即可.【詳解】解:,因?yàn)椋?,所以,在上單調(diào)遞增,則在上的值域?yàn)?,因?yàn)樗悬c(diǎn)所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運(yùn)算能力,屬于中檔題.9、A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.10、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點(diǎn)睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.11、D【解析】
利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.12、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點(diǎn)睛】本題主要考查了對數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用兩角和的正切公式結(jié)合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式結(jié)合弦化切思想求出和的值,進(jìn)而利用兩角差的余弦公式求出的值.【詳解】,,,.故答案為:;.【點(diǎn)睛】本題主要考查三角函數(shù)值的計(jì)算,考查兩角和的正切公式、兩角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的應(yīng)用,難度不大.14、2【解析】
設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.15、1【解析】
由求出,代入,進(jìn)行數(shù)量積的運(yùn)算即得.【詳解】,存在實(shí)數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點(diǎn)睛】本題考查向量共線定理和平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.16、【解析】
將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個(gè)等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對棱長相等將三棱錐補(bǔ)成長方體是解答的關(guān)鍵,考查推理能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2)證明見解析.【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時(shí),取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時(shí)等號成立,令,則在上單調(diào)遞減當(dāng)時(shí),.【點(diǎn)睛】本小題主要考查含有絕對值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.18、(1)見解析(2)平面.見解析【解析】
(1)要證平面,只需證明,,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【詳解】(1),為邊的中點(diǎn),,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點(diǎn),,又,,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、、分別為邊、、的中點(diǎn),.又是的重心,,,平面,平面,平面.【點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.19、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設(shè)點(diǎn),設(shè)直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設(shè)直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關(guān)系、弦長公式、三角形的面釈計(jì)算公式、基本不等式的性質(zhì),即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設(shè)直線,則聯(lián)立,得,,解得:,又由數(shù)形結(jié)合知.設(shè)點(diǎn),則,,,,,即點(diǎn)在直線上.(Ⅲ)由(Ⅰ)知,曲線,點(diǎn),設(shè)直線的方程為:,聯(lián)立,得:,,設(shè),,,,面積,令,,當(dāng)且僅當(dāng),即時(shí)等號成立,所以面積的最大值為.【點(diǎn)睛】本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓的相交問題、弦長公式、三角形的面積計(jì)算公式、基本不等式的性質(zhì),考查了推理論證能力與運(yùn)算求解能力,屬于難題.20、(1)見解析(2)【解析】
(1)設(shè)EC與DF交于點(diǎn)N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點(diǎn)為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計(jì)算出體積.【詳解】(1)證明:設(shè)與交于點(diǎn),連接,在矩形中,點(diǎn)為中點(diǎn),∵為的中點(diǎn),∴,又∵平面,平面,∴平面.(2)取中點(diǎn)為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點(diǎn)睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補(bǔ)形法、等體積法.①割補(bǔ)法:求一些不規(guī)則幾何體的體積時(shí),常用割補(bǔ)法轉(zhuǎn)化成已知體積公式的幾何體進(jìn)行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時(shí),這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計(jì)算得到高的數(shù)值.21、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長.【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長a+b+c=3+3.【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航空物流企業(yè)的戰(zhàn)略規(guī)劃與執(zhí)行考核試卷
- 船舶改裝項(xiàng)目施工過程中的質(zhì)量控制信息化考核試卷
- 現(xiàn)代林業(yè)機(jī)械發(fā)展趨勢與挑戰(zhàn)考核試卷
- 紅外測溫儀的制造與優(yōu)化考核試卷
- 玻璃制品表面涂層技術(shù)考核試卷
- 墨水生產(chǎn)過程中的自動(dòng)化設(shè)備操作考核試卷
- 眼鏡制造業(yè)的質(zhì)量控制體系考核試卷
- 租書服務(wù)創(chuàng)新案例考核試卷
- 煤炭加工企業(yè)的效益分析與財(cái)務(wù)評估考核試卷
- 抖音直播帶貨火花支付傭金結(jié)算服務(wù)協(xié)議
- 2025年高三高考沖刺主題教育班會:《高三考前心理調(diào)適指南:減壓賦能 輕松備考》-2024-2025學(xué)年高中主題班會課件
- 2025年安全生產(chǎn)考試題庫(消防安全應(yīng)急處置)消防設(shè)施運(yùn)行維護(hù)試題
- 鄂爾多斯市水發(fā)燃?xì)庥邢薰菊衅腹P試真題2024
- 2025年臨海市紀(jì)委市監(jiān)委下屬事業(yè)單位公開選聘工作人員1人筆試備考題庫及答案解析
- 河北省唐山市、廊坊市2025年高三高考第二次模擬演練思想政治試卷(含答案)
- 湖北武漢市華中師大一附中2025屆高三3月押軸試題物理試題試卷含解析
- 司法雇員考試題目及答案
- 國家金融監(jiān)督管理總局所屬事業(yè)單位招聘真題2024
- 2024年全國高中數(shù)學(xué)聯(lián)賽(浙江預(yù)賽)試題含參考答案
- MOOC 理解馬克思-南京大學(xué) 中國大學(xué)慕課答案
- 發(fā)展少數(shù)民族醫(yī)藥實(shí)施方案
評論
0/150
提交評論