甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第1頁
甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第2頁
甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第3頁
甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第4頁
甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省金昌市2025屆數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為,,焦距為,過點作軸的垂線與橢圓相交,其中一個交點為點(如圖所示),若的面積為,則橢圓的方程為()A B.C. D.2.下列命題錯誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件3.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.4.下列導(dǎo)數(shù)運算正確的是()A. B.C. D.5.已知直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,則實數(shù)a的值為()A.﹣2 B.C.1 D.1或﹣26.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.7.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.18.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立D.如果,那么9.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.11.饕餮(tāotiè)紋,青銅器上常見的花紋之一,盛行于商代至西周早期,最早出現(xiàn)在距今五千年前長江下游地區(qū)的良渚文化玉器上.有人將饕餮紋的一部分畫到了方格紙上,如圖所示,每個小方格的邊長為,有一點從點出發(fā)每次向右或向下跳一個單位長度,且向右或向下跳是等可能性的,那么它經(jīng)過次跳動后恰好是沿著饕餮紋的路線到達(dá)點的概率為()A. B.C. D.12.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數(shù)學(xué)、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列,前項和分別為,,若對任意自然數(shù)都有,則的值為______.14.已知實數(shù),滿足,則的最大值為______.15.已知在△中,角A,B,C的對邊分別是a,b,c,若△的面積為2,邊上中線的長為.且,則△外接圓的面積為___________16.如圖所示,二面角為,是棱上的兩點,分別在半平面內(nèi),且,,,,,則的長______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,其中P為E的準(zhǔn)線上一點,O是坐標(biāo)原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標(biāo);若不存在,請說明理由18.(12分)已知拋物線的焦點為F,直線l交拋物線于不同的A、B兩點.(1)若直線l的方程為,求線段AB的長;(2)若直線l經(jīng)過點P(-1,0),點A關(guān)于x軸的對稱點為A',求證:A'、F、B三點共線.19.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面20.(12分)在正方體中,E,F(xiàn)分別是,的中點(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值21.(12分)已知橢圓:的一個焦點坐標(biāo)為,離心率.(1)求橢圓的方程;(2)設(shè)為坐標(biāo)原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設(shè)橢圓上一點R的橫坐標(biāo)為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.22.(10分)已知點A(,0),點C為圓B:(B為圓心)上一動點,線段AC的垂直平分線與直線BC交于點G(1)設(shè)點G的軌跡為曲線T,求曲線T的方程;(2)若過點P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點,求△MNO面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可得,令,可得,再由三角形的面積公式,解方程可得,,即可得到所求橢圓的方程【詳解】由題意可得,即,即有,令,則,可得,則,即,解得,,∴橢圓的方程為故選:A2、C【解析】根據(jù)題意,對四個選項一一進行分析,舉出例子當(dāng)時,,即可判斷A選項;根據(jù)特稱命題的否定為全稱命題,可判斷B選項;根據(jù)充分條件和必要條件的定義,即可判斷CD選項.【詳解】解:對于A,當(dāng)時,,,故A正確;對于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對于C,當(dāng)且時,成立;當(dāng)時,卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯誤;對于D,因為當(dāng)時,有可能等于0,當(dāng)時,必有,所以“”是“”的必要不充分條件,故D正確.故選:C.3、D【解析】由題知是等腰直角三角形,,又根據(jù)通徑的結(jié)論知,結(jié)合可列出關(guān)于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.4、B【解析】利用基本初等函數(shù)的導(dǎo)數(shù)和復(fù)合函數(shù)的導(dǎo)數(shù),依次分析即得解【詳解】選項A,,錯誤;選項B,,正確;選項C,,錯誤;選項D,,錯誤故選:B5、B【解析】由題意,利用兩直線垂直的性質(zhì),兩直線垂直時,一次項對應(yīng)系數(shù)之積的和等于0,計算求得a的值【詳解】∵直線l1:ax+2y=0與直線l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故選:B6、A【解析】利用三角形正弦定理結(jié)合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A7、A【解析】分截距都為零和都不為零討論即可.【詳解】當(dāng)截距都為零時,直線過原點,;當(dāng)截距不為零時,,.綜上:或.故選:A.8、C【解析】設(shè)圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設(shè)圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當(dāng)且僅當(dāng)時等號成立,所以對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立.故選:C9、A【解析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計算說明“若q則p”的真假即可判斷作答.【詳解】因為,由得:,則,當(dāng)且僅當(dāng),即時取等號,因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A10、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.11、B【解析】本題首先可根據(jù)題意列出次跳動的所有基本事件,然后找出沿著饕餮紋的路線到達(dá)點的事件,最后根據(jù)古典概型的概率計算公式即可得出結(jié)果.【詳解】點從點出發(fā),每次向右或向下跳一個單位長度,次跳動的所有基本事件有:(右,右,右)、(右,右,下)、(右,下,右)、(下,右,右)、(右,下,下)、(下,右,下)、(下,下,右)、(下,下,下),沿著饕餮紋的路線到達(dá)點的事件有:(下,下,右),故到達(dá)點的概率,故選:B.12、A【解析】先由列舉法計算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個數(shù),基本事件個數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由等差數(shù)列的性質(zhì)可得:.再利用已知即可得出【詳解】由等差數(shù)列的性質(zhì)可得:對于任意的都有,則故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),求和公式,考查了推理能力與計算能力,屬于中檔題14、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無誤作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會在可行域的端點或邊界上取得.15、或【解析】由已知,結(jié)合正弦定理邊角關(guān)系及三角形內(nèi)角的性質(zhì)可得,再根據(jù)三角形面積公式、余弦定理列方程求邊長b、c,應(yīng)用余弦定理求邊長a,根據(jù)正弦定理求外接圓半徑,再用圓的面積公式求面積.【詳解】由題設(shè)及正弦定理邊角關(guān)系有,又,∴,∴,∴.又,∴,即又據(jù)題意,得,且,∴或,故或,∴△外接圓的半徑或,∴△外接圓的面積為或故答案為:或16、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點,分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點睛】本題主要考查空間向量的運算法則以及數(shù)量積的運算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;【解析】(1)設(shè),利用向量坐標(biāo)運算求出p即可;(2)設(shè)直線MC,MD的斜率分別為,,利用坐標(biāo)計算恒成立,即可求解.【小問1詳解】拋物線的焦點為,設(shè),則,因為,所以,得所以拋物線E的方程為【小問2詳解】假設(shè)在x軸上存在定點,使得x軸平分設(shè)直線的方程為,設(shè)點,,聯(lián)立,可得∵恒成立,∴,設(shè)直線MC,MD的斜率分別為,,則由定點,使得x軸平分,則,所以把根與系數(shù)的關(guān)系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點,使得x軸平分18、(1)8;(2)證明見解析.【解析】(1)聯(lián)立直線與拋物線方程,應(yīng)用韋達(dá)定理及弦長公式求線段AB的長;(2)設(shè)為,聯(lián)立拋物線由韋達(dá)定理可得,,應(yīng)用兩點式判斷是否為0即可證結(jié)論.【小問1詳解】由題設(shè),聯(lián)立直線與拋物線方程可得,則,,∴,,所以.【小問2詳解】由題設(shè),,又直線l經(jīng)過點P(-1,0),此時直線斜率必存在且不為0,可設(shè)為,聯(lián)立拋物線得:,則,,又,故,而,所以,所以A'、F、B三點共線.19、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.20、(1)見解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點,G是中點,∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長為2,則,則,設(shè)平面的法向量為,則,取;設(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴21、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計算出AB的長.(3)設(shè)出直線PR的方程,再與橢圓的方程聯(lián)立求出點P坐標(biāo),同理可得點Q坐標(biāo),計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論