版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,,,前項(xiàng)和()A. B.C. D.2.若兩條平行線與之間的距離是2,則m的值為()A.或11 B.或10C.或12 D.或113.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.4.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.5.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若,則的面積為()A. B.C. D.6.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中說:“九百九十六斤棉,贈(zèng)分八子做盤纏,次第每人多十七,要將第八數(shù)來言,務(wù)要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈(zèng)送給8個(gè)子女做旅費(fèi),從第一個(gè)孩子開始,以后每人依次多17斤,直到第8個(gè)孩子為止.分配時(shí)一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說閑話.”在這個(gè)問題中,第5個(gè)孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤7.已知橢圓C:的左右焦點(diǎn)為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為()A. B.C. D.8.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為()A. B.C. D.9.已知橢圓與雙曲線有相同的焦點(diǎn),且它們的離心率之積為1,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.10.若直線與曲線有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.11.與圓和圓都外切的圓的圓心在()A.一個(gè)圓上 B.一個(gè)橢圓上C.雙曲線的一支上 D.一條拋物線上12.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線的傾斜角為______14.在空間直角坐標(biāo)系中,已知,,,,則___________.15.若一個(gè)球表面積為,則該球的半徑為____________16.已知命題恒成立;,若p,均為真,則實(shí)數(shù)a的取值范圍__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:,,…,所得到如圖所示的頻率分布直圖(1)求圖中實(shí)數(shù)的值;(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.18.(12分)已知圓C:(1)若過點(diǎn)的直線l與圓C相交所得的弦長(zhǎng)為,求直線l的方程;(2)若P是直線:上的動(dòng)點(diǎn),PA,PB是圓C的兩條切線,A,B是切點(diǎn),求四邊形PACB面積的最小值19.(12分)如圖,在直三棱柱中,,是中點(diǎn).(1)求點(diǎn)到平面的的距離;(2)求平面與平面夾角的余弦值;20.(12分)已知四邊形是菱形,四邊形是矩形,平面平面,,,G是的中點(diǎn)(1)證明:平面;(2)求二面角的正弦值21.(12分)已知函數(shù)(Ⅰ)若的圖象在點(diǎn)處的切線與軸負(fù)半軸有公共點(diǎn),求的取值范圍;(Ⅱ)當(dāng)時(shí),求的最值22.(10分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù),利用對(duì)數(shù)運(yùn)算得到,再利用等比數(shù)列的前n項(xiàng)和公式求解.【詳解】解:因?yàn)?,所以,則,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以,故選:C2、A【解析】利用平行線間距離公式進(jìn)行求解即可.【詳解】因?yàn)閮蓷l平行線與之間的距離是2,所以,或,故選:A3、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【詳解】故選:B.4、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.5、B【解析】求出,可知為等腰三角形,取的中點(diǎn),可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點(diǎn),因?yàn)?,則,由勾股定理可得,所以,.故選:B.6、A【解析】根據(jù)等差數(shù)列的前n項(xiàng)和公式、等差數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】依題意得,八個(gè)子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為,公差為d,前n項(xiàng)和為,第一個(gè)孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A7、A【解析】根據(jù)橢圓的定義可得△AF1B的周長(zhǎng)為4a,由題意求出a,結(jié)合離心率計(jì)算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長(zhǎng)為,又△AF1B的周長(zhǎng)為4,則,,,,,所以方程為,故選:A.8、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B9、A【解析】計(jì)算雙曲線的焦點(diǎn)為,離心率,得到橢圓的焦點(diǎn)為,離心率,計(jì)算得到答案.【詳解】雙曲線的焦點(diǎn)為,離心率,故橢圓的焦點(diǎn)為,離心率,即.解得,故橢圓標(biāo)準(zhǔn)方程為:.故選:.【點(diǎn)睛】本題考查了橢圓和雙曲線的離心率,焦點(diǎn),橢圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.10、D【解析】由題可知,曲線表示一個(gè)半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當(dāng)直線與半圓O相切時(shí),直線與半圓O有一個(gè)公共點(diǎn),此時(shí),,所以,由圖可知,此時(shí),所以,當(dāng)直線如圖過點(diǎn)A、B時(shí),直線與半圓O剛好有兩個(gè)公共點(diǎn),此時(shí),由圖可知,當(dāng)直線介于與之間時(shí),直線與曲線有兩個(gè)公共點(diǎn),所以.故選:D.11、C【解析】設(shè)動(dòng)圓的半徑為,然后根據(jù)動(dòng)圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設(shè)動(dòng)圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點(diǎn)的軌跡是雙曲線的一支故選:C12、A【解析】將“好貨”與“不便宜”進(jìn)行相互推理即可求得答案.【詳解】根據(jù)題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】把直線方程化為斜截式,再利用斜率與傾斜角的關(guān)系即可得出【詳解】設(shè)直線的傾斜角為由直線化為,故,又,故,故答案為【點(diǎn)睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是14、或##或【解析】根據(jù)向量平行時(shí)坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.15、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:16、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實(shí)數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=0.03;(2)544人;(3).【解析】(1)根據(jù)圖中所有小矩形的面積之和等于1求解.
(2)根據(jù)頻率分布直方圖,得到成績(jī)不低于60分的頻率,再根據(jù)該校高一年級(jí)共有學(xué)生640人求解.
(3)由頻率分布直方圖得到成績(jī)?cè)赱40,50)和[90,100]分?jǐn)?shù)段內(nèi)的人數(shù),先列舉出從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生的基本事件總數(shù),再得到兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10”的基本事件數(shù),代入古典概型概率求解.【詳解】(1)∵圖中所有小矩形的面積之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根據(jù)頻率分布直方圖,成績(jī)不低于60分的頻率為1?10×(0.005+0.01)=0.85,
∵該校高一年級(jí)共有學(xué)生640人,
∴由樣本估計(jì)總體的思想,可估計(jì)該校高一年級(jí)數(shù)學(xué)成績(jī)不低于60分的人數(shù)約為640×0.85=544人.
(3)成績(jī)?cè)赱40,50)分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B,
成績(jī)?cè)赱90,100]分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F(xiàn).
若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,
則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),
(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共15種.
如果兩名學(xué)生的數(shù)學(xué)成績(jī)都在[40,50)分?jǐn)?shù)段內(nèi)或都在[90,100]分?jǐn)?shù)段內(nèi),
那么這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值一定不大于10.
如果一個(gè)成績(jī)?cè)赱40,50)分?jǐn)?shù)段內(nèi),另一個(gè)成績(jī)?cè)赱90,100]分?jǐn)?shù)段內(nèi),
那么這兩名學(xué)生數(shù)學(xué)成績(jī)之差的絕對(duì)值一定大于10.
記“這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10”為事件M,
則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共7種.
∴所求概率為P(M)=.【點(diǎn)睛】本題主要考查頻率分布直方圖的應(yīng)用以及古典概型概率的求法,還考查了運(yùn)算求解的能力,屬于中檔題.18、(1)或.(2)8【解析】(1)先判斷當(dāng)斜率不存在時(shí),不滿足條件;再判斷當(dāng)斜率存在時(shí),設(shè)利用垂徑定理列方程求出k,即可求出直線方程;(2)過P作圓C的兩條切線,切點(diǎn)分別為A、B,連結(jié)CA、CB,得到.判斷出當(dāng)時(shí),最小,四邊形PACB面積取得最小值.利用點(diǎn)到直線的距離公式求出,,即可求出四邊形PACB面積的最小值.【小問1詳解】圓C:化為標(biāo)準(zhǔn)方程為:,所以圓心為,半徑為r=4.(1)當(dāng)斜率不存在時(shí),x=1代入圓方程得,弦長(zhǎng)為,不滿足條件;(2)當(dāng)斜率存在時(shí),設(shè)即.圓心C到直線l的距離,解得:或k=0,所以直線方程為或.【小問2詳解】過P作圓C的兩條切線,切點(diǎn)分別為A、B,連結(jié)CA、CB,則.因?yàn)?所以所以.所以當(dāng)時(shí),最小,四邊形PACB面積取得最小值.所以,所以,即四邊形PACB面積的最小值為8.19、(1)(2)【解析】(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計(jì)算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計(jì)算即可小問1詳解】解:(1)以為原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系所以因?yàn)椋O(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點(diǎn)到平面的距離為,則,所以點(diǎn)到平面的的距離的距離為;【小問2詳解】(2)因?yàn)槠矫?,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值20、(1)證明見解析(2)【解析】(1)設(shè),線段的中點(diǎn)為H,分別連接,可證,從而可得平面;(2)建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量和平面的一個(gè)法向量后可求二面角的余弦值.【小問1詳解】證明:設(shè),線段的中點(diǎn)為H,分別連接又因?yàn)镚是的中點(diǎn),所以因?yàn)樗倪呅螢榫匦?,?jù)菱形性質(zhì)知,O為的中點(diǎn),所以,且,所以,且,所以四邊形是平行四邊形,所以又因?yàn)槠矫?,平面,所以平面【小?詳解】解:據(jù)四邊形是菱形的性質(zhì)知,又因?yàn)槠矫嫫矫?,平面,平面平面,故平面,所以以分別為x軸,y軸,以過與的交點(diǎn)O,且垂直于平面的直線為z軸建立空間直角坐標(biāo)系如圖所示,則有,所以設(shè)平面的一個(gè)法向量,則令,則,且,所以設(shè)平面的一個(gè)法向量,則令,則,且,所以所以,所以二面角的正弦值為21、(Ⅰ);(Ⅱ)答案見解析.【解析】(Ⅰ)求導(dǎo)數(shù).求得切線方程,由切線與軸的交點(diǎn)在負(fù)半軸可得的范圍;(Ⅱ)求導(dǎo)數(shù),由的正負(fù)確定單調(diào)性,極值得最值【詳解】命題意圖本題主要考查導(dǎo)數(shù)在函數(shù)問題中的應(yīng)用解析(Ⅰ)由題可知,,故可得的圖象在點(diǎn)處的切線方程為令,可得由題意可得,即,解得,即的取值范圍為(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游行業(yè)的數(shù)字化轉(zhuǎn)型與營銷策略
- 幼兒園飲食認(rèn)知課程設(shè)計(jì)
- 大班冬天美食課程設(shè)計(jì)
- NLRP3-IN-56-生命科學(xué)試劑-MCE
- MS453-生命科學(xué)試劑-MCE
- MED6-189-生命科學(xué)試劑-MCE
- 創(chuàng)新型制作教程啟迪思維
- 亞麻紡織廢水課程設(shè)計(jì)
- 伺服三環(huán)控制課程設(shè)計(jì)
- 應(yīng)用隨機(jī)過程課程設(shè)計(jì)
- MOOC 工程制圖-北京科技大學(xué) 中國大學(xué)慕課答案
- 健身起跑線智慧樹知到期末考試答案2024年
- 2024年煤礦探放水考試題庫附答案
- 礦山安全生產(chǎn)管理經(jīng)驗(yàn)分享
- 初識(shí)旅游智慧樹知到期末考試答案2024年
- 2023年中國電動(dòng)工具行業(yè)發(fā)展白皮書
- 漢語言文學(xué)生涯發(fā)展展示
- 盆底功能障礙問卷(PFDI20)
- 期末綜合復(fù)習(xí)(試題)-2023-2024學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 充電樁競(jìng)爭(zhēng)格局分析
- 線性規(guī)劃課后題答案
評(píng)論
0/150
提交評(píng)論