2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆湖南省郴州市第二中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件2.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項(xiàng)和為()A. B.C. D.3.若是等差數(shù)列的前項(xiàng)和,,則()A.13 B.39C.45 D.214.已知橢圓:的左、右焦點(diǎn)為,,上頂點(diǎn)為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形5.函數(shù)在處有極小值5,則()A. B.C.或 D.或36.已知函數(shù)的圖象在點(diǎn)處的切線與直線平行,若數(shù)列的前項(xiàng)和為,則的值為()A. B.C. D.7.已知,則點(diǎn)到平面的距離為()A. B.C. D.8.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.9.已知點(diǎn)P是雙曲線上的動(dòng)點(diǎn),過原點(diǎn)O的直線l與雙曲線分別相交于M、N兩點(diǎn),則的最小值為()A.4 B.3C.2 D.110.橢圓的焦點(diǎn)為、,上頂點(diǎn)為,若,則()A B.C. D.11.方程表示的曲線是()A.一個(gè)橢圓和一條直線 B.一個(gè)橢圓和一條射線C.一條射線 D.一個(gè)橢圓12.如圖,在直三棱柱中,且,點(diǎn)E為中點(diǎn).若平面過點(diǎn)E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)到直線的距離為_______.14.設(shè)圓,圓,則圓有公切線___________條.15.已知點(diǎn),則線段的垂直平分線的一般式方程為__________.16.若橢圓的一個(gè)焦點(diǎn)為,則p的值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)當(dāng)時(shí),設(shè),求函數(shù)的單調(diào)區(qū)間.18.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值19.(12分)設(shè)數(shù)列的前項(xiàng)和,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前項(xiàng)和,求使成立的的最小值20.(12分)已知圓的圓心在直線上,且過點(diǎn)(1)求圓的方程;(2)已知直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2,求直線l的方程.21.(12分)已知命題p:直線與雙曲線的右支有兩個(gè)不同的交點(diǎn),命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實(shí)數(shù)k的取值范圍.22.(10分)從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得.(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程;(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.附:線性回歸方程中,,,其中,為樣本平均值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時(shí),成立,反過來,當(dāng)時(shí),例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查充分不必要條件的判斷,重點(diǎn)考查基本判斷方法,屬于基礎(chǔ)題型.2、C【解析】先利用已知條件得到,解出公差,得到通項(xiàng)公式,再代入數(shù)列,利用裂項(xiàng)相消法求和即可.【詳解】因?yàn)槌傻缺葦?shù)列,,故,即,故,解得或(舍去),故,即,故的前項(xiàng)和為:.故選:C.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的方法:(1)倒序相加法:如果一個(gè)數(shù)列的前項(xiàng)中首末兩端等距離的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前項(xiàng)和即可以用倒序相加法(2)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那么這個(gè)數(shù)列的前項(xiàng)和即可以用錯(cuò)位相減法來求;(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí),中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時(shí)可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項(xiàng)求和法:一個(gè)數(shù)列的前項(xiàng)和可以兩兩結(jié)合求解,則稱之為并項(xiàng)求和,形如類型,可采用兩項(xiàng)合并求解.3、B【解析】先根據(jù)等差數(shù)列的通項(xiàng)公式求出,然后根據(jù)等差數(shù)列的求和公式及等差數(shù)列的下標(biāo)性質(zhì)求得答案.【詳解】設(shè)等差數(shù)列的公差為d,則,則.故選:B.4、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因?yàn)?,所以銳角,所以為銳角三角形.故選:A.5、A【解析】由題意條件和,可建立一個(gè)關(guān)于的方程組,解出的值,然后再將帶入到中去驗(yàn)證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當(dāng),時(shí),.由,得;由,得.則在上單調(diào)遞增,在上單調(diào)遞減,故在處有極大值5,不符合題意.當(dāng),時(shí),.由,得;由,得.則在上單調(diào)遞減,在上單調(diào)遞增,故在處有極小值5,符合題意,從而故選:A.6、A【解析】函數(shù)的圖象在點(diǎn)處的切線與直線平行,利用導(dǎo)函數(shù)的幾何含義可以求出,轉(zhuǎn)化求解數(shù)列的通項(xiàng)公式,進(jìn)而由數(shù)列的通項(xiàng)公式,利用裂項(xiàng)相消法求和即可【詳解】解:∵函數(shù)的圖象在點(diǎn)處的切線與直線平行,由求導(dǎo)得:,由導(dǎo)函數(shù)得幾何含義得:,可得,∴,所以,∴數(shù)列的通項(xiàng)為,所以數(shù)列的前項(xiàng)的和即為,則利用裂項(xiàng)相消法可以得到:所以數(shù)列的前2021項(xiàng)的和為:.故選:A.7、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點(diǎn)到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點(diǎn)到平面的距離為,所以點(diǎn)到平面的距離為.故選:A8、A【解析】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性即可解不等式【詳解】由則函數(shù)在上單調(diào)遞增又,所以,解得故選:A9、C【解析】根據(jù)雙曲線的對(duì)稱性可得為的中點(diǎn),即可得到,再根據(jù)雙曲線的性質(zhì)計(jì)算可得;【詳解】解:根據(jù)雙曲線的對(duì)稱性可知為的中點(diǎn),所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點(diǎn)時(shí)取等號(hào),所以故選:C10、C【解析】分析出為等邊三角形,可得出,進(jìn)而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因?yàn)闄E圓的上頂點(diǎn)為點(diǎn),焦點(diǎn)為、,所以,,為等邊三角形,則,即,因此,.故選:C.11、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個(gè)橢圓或一條直線.故選:A.12、B【解析】構(gòu)造出長方體,取中點(diǎn)連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點(diǎn),連接則所有過點(diǎn)與成角的平面,均與以為軸的圓錐相切,過點(diǎn)繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長方體的外面)時(shí),與面所成角為75°(與面成45°,與成30°),過點(diǎn)繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個(gè)邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個(gè),故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】應(yīng)用點(diǎn)線距離公式求點(diǎn)線距離.【詳解】由題設(shè),點(diǎn)到距離為.故答案為:14、2【解析】將圓轉(zhuǎn)化成標(biāo)準(zhǔn)式,結(jié)合圓心距判斷兩圓位置關(guān)系,進(jìn)而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:215、【解析】由中點(diǎn)坐標(biāo)公式和斜率公式可得的中點(diǎn)和直線斜率,由垂直關(guān)系可得垂直平分線的斜率,由點(diǎn)斜式可得直線方程,化為一般式即可【詳解】由中點(diǎn)坐標(biāo)公式可得,的中點(diǎn)為,可得直線的斜率為,由垂直關(guān)系可得其垂直平分線的斜率為,故可得所求直線的方程為:,化為一般式可得故答案為:16、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)求g(x)導(dǎo)數(shù),導(dǎo)數(shù)同分分解因式,討論其正負(fù)即可判斷g(x)的單調(diào)性.【小問1詳解】當(dāng)時(shí),,則,又,設(shè)所求切線的斜率為,則,則切線的方程為:,化簡即得切線的方程為:.【小問2詳解】,其定義域?yàn)?,,∵,∴ax+1>0,∴當(dāng)時(shí),;當(dāng)時(shí),.的增區(qū)間為,減區(qū)間為.18、(1)證明見解析;(2).【解析】(1)連接與交于點(diǎn)O,易得平面,取的中點(diǎn)M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點(diǎn),分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,由求解.【詳解】(1)如圖所示:連接與交于點(diǎn)O,因?yàn)闉檎叫危?,又平面,故,由,故平面,取的中點(diǎn)M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點(diǎn),分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個(gè)法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個(gè)法向量為,則得令,則,故設(shè)平面的一個(gè)法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為19、(1).(2)10.【解析】(1)借助于將轉(zhuǎn)化為,進(jìn)而得到數(shù)列為等比數(shù)列,通過首項(xiàng)和公比求得通項(xiàng)公式;(2)整理數(shù)列的通項(xiàng)公式,可知數(shù)列為等比數(shù)列,求得前n項(xiàng)和,代入不等式可求得n的最小值試題解析:(1)由已知,有,即從而又因?yàn)槌傻炔顢?shù)列,即所以,解得所以,數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列故(2)由(1)得.所以由,得,即因?yàn)椋裕谑?,使成立的n的最小值為10考點(diǎn):1.?dāng)?shù)列通項(xiàng)公式;2.等比數(shù)列求和20、(1);(2)或.【解析】(1)根據(jù)題意設(shè)圓心坐標(biāo)為,進(jìn)而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上,設(shè)所求圓心坐標(biāo)為∵過點(diǎn),解得∴所求圓的方程為(2)直線經(jīng)過原點(diǎn),并且被圓截得的弦長為2①當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí)直線被圓截得的弦長為2,滿足條件;②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,由于直線被圓截得的弦長為,故圓心到直線的距離為故由點(diǎn)到直線的距離公式得:解得,所以直線l的方程為綜上所述,則直線l的方程為或【點(diǎn)睛】易錯(cuò)點(diǎn)點(diǎn)睛:本題第二問在解題的過程中要注意直線斜率不存在情況的討論,即分直線的斜率存在和不存在兩種,避免在解題的過程中忽視斜率不存在的情況致錯(cuò),考查運(yùn)算求解能力與分類討論思想,是中檔題.21、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q的真假,再利用復(fù)合命題的真假判斷;(2)根據(jù)命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對(duì)于命題p,易知直線與雙曲線的左、右支各有一個(gè)交點(diǎn),∴命題p為假命題;對(duì)于命題q,時(shí),有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對(duì)于命題p,由得,直線與雙曲線的右支有兩個(gè)不同的交點(diǎn),即此方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論