山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題含解析_第1頁
山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題含解析_第2頁
山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題含解析_第3頁
山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題含解析_第4頁
山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省聊城市于集鎮(zhèn)中學2025屆數(shù)學高一上期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列哪組中的兩個函數(shù)是同一函數(shù)()A與 B.與C.與 D.與2.已知扇形的周長是6,圓心角為,則扇形的面積是()A.1 B.2C.3 D.43.下列函數(shù)中,與函數(shù)是同一函數(shù)的是()A. B.C. D.4.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是A. B.C. D.5.函數(shù)的定義城為()A B.C. D.6.設函數(shù),則下列結論不正確的是()A.函數(shù)的值域是;B.點是函數(shù)的圖像的一個對稱中心;C.直線是函數(shù)的圖像的一條對稱軸;D.將函數(shù)的圖像向右平移個單位長度后,所得圖像對應的函數(shù)是偶函數(shù)7.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.8.函數(shù)lgx=3,則x=()A1000 B.100C.310 D.309.已知函數(shù)對于任意兩個不相等實數(shù),都有成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知集合,則函數(shù)的最小值為()A.4 B.2C.-2 D.-4二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù)的圖象關于y軸對稱,且其定義域為,則函數(shù)在上的值域為________.12.已知冪函數(shù)f(x)是奇函數(shù)且在上是減函數(shù),請寫出f(x)的一個表達式________13.已知冪函數(shù)的圖象過點,則________14.已知函數(shù)f(x)=(a>0,a≠1)是偶函數(shù),則a=_________,則f(x)的最大值為________.15.已知冪函數(shù)在區(qū)間上單調遞減,則___________.16.已知函數(shù),則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性,并證明18.已知,且向量在向量的方向上的投影為,求:(1)與的夾角;(2).19.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.20.已知函數(shù)是定義在上的奇函數(shù),且當時,.(1)當時,求函數(shù)的解析式.(2)解關于的不等式:.21.已知函數(shù).(1)若函數(shù)在上至少有一個零點,求的取值范圍;(2)若函數(shù)在上最大值為3,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)同一函數(shù)的概念,逐項判斷,即可得出結果.【詳解】A選項,的定義域為,的定義域為,定義域不同,故A錯;B選項,定義域為,的定義域為,定義域不同,故B錯;C選項,的定義域為,的定義域為,定義域不同,故C錯;D選項,與的定義域都為,且,對應關系一致,故D正確.故選:D.2、B【解析】設扇形的半徑為r,弧長為l,先由周長求出半徑和弧長,即可求出扇形的面積.【詳解】設扇形的半徑為r,弧長為l,因為圓心角為,所以.因為扇形的周長是6,所以,解得:.所以扇形的面積是.故選:B3、C【解析】確定定義域相同,對應法則相同即可判斷【詳解】解:定義域為,A中定義域為,定義域不同,錯誤;B中化簡為,對應關系不同,錯誤;C中定義域為,化簡為,正確;D中定義域為,定義域不同,錯誤;故選:C4、A【解析】當時,在上是增函數(shù),且恒大于零,即當時,在上是減函數(shù),且恒大于零,即,因此選A點睛:1.復合函數(shù)單調性的規(guī)則若兩個簡單函數(shù)的單調性相同,則它們的復合函數(shù)為增函數(shù);若兩個簡單函數(shù)的單調性相反,則它們的復合函數(shù)為減函數(shù).即“同增異減”

函數(shù)單調性的性質(1)若f(x),g(x)均為區(qū)間A上的增(減)函數(shù),則f(x)+g(x)也是區(qū)間A上的增(減)函數(shù),更進一步,即增+增=增,增-減=增,減+減=減,減-增=減;(2)奇函數(shù)在其關于原點對稱的區(qū)間上單調性相同,偶函數(shù)在其關于原點對稱的區(qū)間上單調性相反5、C【解析】由對數(shù)函數(shù)的性質以及根式的性質列不等式組,即可求解.【詳解】由題意可得解得,所以原函數(shù)的定義域為,故選:C6、B【解析】根據(jù)余弦函數(shù)的性質一一判斷即可;【詳解】解:因為,,所以,即函數(shù)的值域是,故A正確;因為,所以函數(shù)關于對稱,故B錯誤;因為,所以函數(shù)關于直線對稱,故C正確;將函數(shù)的圖像向右平移個單位長度得到為偶函數(shù),故D正確;故選:B7、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應用,意在考查學生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.8、A【解析】由lgx=3,可得直接計算出結果.【詳解】由lgx=3,有:則,故選:A【點睛】本題考查對數(shù)的定義,屬于基礎題.9、B【解析】由題可得函數(shù)為減函數(shù),根據(jù)單調性可求解參數(shù)的范圍.【詳解】由題可得,函數(shù)為單調遞減函數(shù),當時,若單減,則對稱軸,得:,當時,若單減,則,在分界點處,應滿足,即,綜上:故選:B10、D【解析】因為集合,所以,設,則,所以,且對稱軸為,所以最小值為,故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】∵函數(shù)的圖象關于y軸對稱,且其定義域為∴,即,且為偶函數(shù)∴,即∴∴函數(shù)在上單調遞增∴,∴函數(shù)在上的值域為故答案為點睛:此題主要考查函數(shù)二次函數(shù)圖象對稱的性質以及二次函數(shù)的值域的求法,求解的關鍵是熟練掌握二次函數(shù)的性質,本題理解對稱性很關鍵12、【解析】由題意可知冪函數(shù)中為負數(shù)且為奇數(shù),從而可求出解析式【詳解】因為冪函數(shù)是奇函數(shù)且在上是減函數(shù),所以為負數(shù)且為奇數(shù),所以f(x)的一個表達式可以是(答案不唯一),故答案為:(答案不唯一)13、3【解析】先求得冪函數(shù)的解析式,再去求函數(shù)值即可.【詳解】設冪函數(shù),則,則,則,則故答案為:314、①.②.【解析】根據(jù)偶函數(shù)f(-x)=f(x)即可求a值;分離常數(shù),根據(jù)單調性即可求最大值,或利用基本不等式求最值.【詳解】是偶函數(shù),,則,則,即,則,則,則,當且僅當,即,則時取等號,即的最大值為,故答案為:,15、【解析】根據(jù)冪函數(shù)定義求出值,再根據(jù)單調性確定結果【詳解】由題意,解得或,又函數(shù)在區(qū)間上單調遞減,則,∴故答案為:16、2【解析】先求出,然后再求的值.【詳解】由題意可得,所以,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)函數(shù)為定義域上的偶函數(shù),證明見解析【解析】(1)由題意可得,解不等式即可求出結果;(2)令,證得,根據(jù)偶函數(shù)的定義即可得出結論.【小問1詳解】由,則有,得.則函數(shù)的定義域為【小問2詳解】函數(shù)為定義域上的偶函數(shù)令,則,又則,有成立則函數(shù)為在定義域上的偶函數(shù)18、(1);(2)【解析】(1)由題知,進而得出,即可求得.(2)根據(jù)數(shù)量積的定義即可得出答案.【詳解】解:(1)由題意,,所以.又因為,所以.(2).【點睛】本題考查了向量的夾角、向量的數(shù)量積,考查學生對公式的熟練程度,屬于基礎題.19、(1)見解析(2)見解析【解析】(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直20、(1)當時,(2)【解析】(1)根據(jù)函數(shù)奇偶性可求出函數(shù)的解析式;(2)先構造函數(shù),然后利用函數(shù)的單調性解不等式.【小問1詳解】解:當時,,..又當時,也滿足當時,函數(shù)的解析式為.【小問2詳解】設函數(shù)函數(shù)在上單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論