【教案】人教A版 選擇性必修二 5.3 5.3.2 第3課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用_第1頁(yè)
【教案】人教A版 選擇性必修二 5.3 5.3.2 第3課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用_第2頁(yè)
【教案】人教A版 選擇性必修二 5.3 5.3.2 第3課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用_第3頁(yè)
【教案】人教A版 選擇性必修二 5.3 5.3.2 第3課時(shí) 導(dǎo)數(shù)的綜合應(yīng)用_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

【教案】人教A版選擇性必修二5.35.3.2第3課時(shí)導(dǎo)數(shù)的綜合應(yīng)用學(xué)校授課教師課時(shí)授課班級(jí)授課地點(diǎn)教具課程基本信息1.課程名稱:人教A版選擇性必修二5.3.2第3課時(shí)導(dǎo)數(shù)的綜合應(yīng)用

2.教學(xué)年級(jí)和班級(jí):高二年級(jí)

3.授課時(shí)間:2023年10月15日

4.教學(xué)時(shí)數(shù):1課時(shí)核心素養(yǎng)目標(biāo)1.讓學(xué)生能夠運(yùn)用導(dǎo)數(shù)知識(shí)分析函數(shù)的單調(diào)性、極值和最值,提升邏輯思維能力和數(shù)學(xué)建模素養(yǎng)。

2.培養(yǎng)學(xué)生運(yùn)用導(dǎo)數(shù)解決實(shí)際問(wèn)題的能力,提高學(xué)生的應(yīng)用意識(shí)和創(chuàng)新思維。

3.通過(guò)導(dǎo)數(shù)綜合應(yīng)用的學(xué)習(xí),激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)科的興趣,增強(qiáng)學(xué)生的自主學(xué)習(xí)能力和團(tuán)隊(duì)合作精神。學(xué)情分析本節(jié)課的對(duì)象是高二年級(jí)的學(xué)生,他們?cè)跀?shù)學(xué)知識(shí)、能力和素質(zhì)方面已經(jīng)具備了一定的基礎(chǔ)。在學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了導(dǎo)數(shù)的基本概念和計(jì)算方法,掌握了導(dǎo)數(shù)在函數(shù)圖像中的應(yīng)用。然而,學(xué)生在導(dǎo)數(shù)的綜合應(yīng)用方面可能還存在一定的困難,尤其是在解決實(shí)際問(wèn)題時(shí),如何運(yùn)用導(dǎo)數(shù)知識(shí)分析函數(shù)的性質(zhì)和最值問(wèn)題。

在知識(shí)層面,學(xué)生對(duì)導(dǎo)數(shù)的概念和計(jì)算方法較為熟悉,但可能對(duì)導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用理解不夠深入。在能力層面,學(xué)生的邏輯思維能力、分析問(wèn)題和解決問(wèn)題的能力有待提高。在素質(zhì)方面,學(xué)生對(duì)數(shù)學(xué)學(xué)科的興趣和自主學(xué)習(xí)能力較強(qiáng),但團(tuán)隊(duì)合作精神有待加強(qiáng)。

此外,學(xué)生在行為習(xí)慣方面較為積極,能夠按時(shí)完成作業(yè),但有時(shí)在課堂上參與度不夠,缺乏主動(dòng)提問(wèn)和思考的習(xí)慣。針對(duì)這些情況,本節(jié)課的教學(xué)設(shè)計(jì)需要關(guān)注學(xué)生的實(shí)際需求,激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)他們主動(dòng)參與課堂,培養(yǎng)他們的思維能力和團(tuán)隊(duì)合作精神。教學(xué)方法與手段1.教學(xué)方法:

-講授法:通過(guò)系統(tǒng)講解,幫助學(xué)生理解導(dǎo)數(shù)綜合應(yīng)用的理論知識(shí)。

-案例分析法:通過(guò)分析具體案例,讓學(xué)生學(xué)會(huì)如何將導(dǎo)數(shù)知識(shí)應(yīng)用于實(shí)際問(wèn)題。

-小組討論法:分組討論問(wèn)題,培養(yǎng)學(xué)生的團(tuán)隊(duì)合作能力和解決問(wèn)題的能力。

2.教學(xué)手段:

-多媒體教學(xué):使用PPT展示關(guān)鍵知識(shí)點(diǎn)和案例,增強(qiáng)視覺(jué)效果。

-教學(xué)軟件:利用數(shù)學(xué)軟件進(jìn)行實(shí)時(shí)演示,幫助學(xué)生直觀理解導(dǎo)數(shù)應(yīng)用。

-網(wǎng)絡(luò)資源:提供在線資源鏈接,鼓勵(lì)學(xué)生在課后自主學(xué)習(xí)和拓展知識(shí)。教學(xué)流程1.導(dǎo)入新課(5分鐘)

-利用上一節(jié)課學(xué)習(xí)的導(dǎo)數(shù)知識(shí),提出問(wèn)題:“如何利用導(dǎo)數(shù)來(lái)確定函數(shù)的極值點(diǎn)?”

-通過(guò)一個(gè)簡(jiǎn)單的函數(shù)圖像,引導(dǎo)學(xué)生回顧導(dǎo)數(shù)與函數(shù)圖像的關(guān)系,為新課內(nèi)容做鋪墊。

2.新課講授(15分鐘)

-講解導(dǎo)數(shù)在函數(shù)單調(diào)性分析中的應(yīng)用,通過(guò)具體函數(shù)案例,展示如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)區(qū)間。

-介紹導(dǎo)數(shù)在求解函數(shù)極值和最值中的應(yīng)用,通過(guò)實(shí)例演示,讓學(xué)生理解極值點(diǎn)和最值點(diǎn)的概念及求解方法。

-分析導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用,如物理中的速度與加速度問(wèn)題,經(jīng)濟(jì)中的邊際成本與邊際收益問(wèn)題,讓學(xué)生感受導(dǎo)數(shù)的實(shí)際意義。

3.實(shí)踐活動(dòng)(10分鐘)

-讓學(xué)生獨(dú)立完成一個(gè)求函數(shù)極值的練習(xí)題,要求學(xué)生在紙上寫出解題過(guò)程,并簡(jiǎn)要解釋每一步的原理。

-提供一個(gè)實(shí)際問(wèn)題的案例,如“某產(chǎn)品生產(chǎn)成本的最小化”,讓學(xué)生嘗試應(yīng)用導(dǎo)數(shù)知識(shí)解決問(wèn)題。

-讓學(xué)生使用數(shù)學(xué)軟件,如GeoGebra,動(dòng)態(tài)觀察函數(shù)圖像及其導(dǎo)數(shù)的變化,加深對(duì)導(dǎo)數(shù)應(yīng)用的理解。

4.學(xué)生小組討論(10分鐘)

-分組討論以下三個(gè)方面的問(wèn)題:

-如何判斷一個(gè)函數(shù)在某個(gè)區(qū)間內(nèi)是增函數(shù)還是減函數(shù)?

-如何利用導(dǎo)數(shù)求出函數(shù)的極值點(diǎn)和最值?

-導(dǎo)數(shù)在實(shí)際問(wèn)題中有什么具體應(yīng)用,舉例說(shuō)明。

-每組選代表分享討論成果,教師進(jìn)行點(diǎn)評(píng)和補(bǔ)充。

5.總結(jié)回顧(5分鐘)

-回顧本節(jié)課的重點(diǎn)內(nèi)容,強(qiáng)調(diào)導(dǎo)數(shù)在函數(shù)單調(diào)性分析、極值和最值求解以及實(shí)際應(yīng)用中的重要性。

-通過(guò)一個(gè)簡(jiǎn)短的小測(cè)驗(yàn),檢查學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況。

-指出本節(jié)課的難點(diǎn),鼓勵(lì)學(xué)生在課后進(jìn)行復(fù)習(xí)和鞏固。教學(xué)資源拓展1.拓展資源:

-導(dǎo)數(shù)在物理學(xué)中的應(yīng)用:介紹導(dǎo)數(shù)在物理學(xué)中的基本應(yīng)用,如速度、加速度、功率等概念的計(jì)算,以及導(dǎo)數(shù)在力學(xué)和電磁學(xué)中的應(yīng)用。

-導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)中的應(yīng)用:分析導(dǎo)數(shù)在微觀經(jīng)濟(jì)學(xué)中的重要作用,如邊際成本、邊際效用、價(jià)格彈性等概念的計(jì)算和應(yīng)用。

-導(dǎo)數(shù)在工程學(xué)中的應(yīng)用:探討導(dǎo)數(shù)在優(yōu)化問(wèn)題中的應(yīng)用,如最短路徑問(wèn)題、最大承載問(wèn)題、工程優(yōu)化設(shè)計(jì)等。

-高階導(dǎo)數(shù)的概念與應(yīng)用:介紹高階導(dǎo)數(shù)的概念,如二階導(dǎo)數(shù)與函數(shù)凹凸性的關(guān)系,以及高階導(dǎo)數(shù)在物理和工程中的應(yīng)用。

-導(dǎo)數(shù)與微分方程:講解導(dǎo)數(shù)在微分方程建立和求解中的作用,如通過(guò)導(dǎo)數(shù)描述物理現(xiàn)象建立微分方程模型。

-實(shí)際案例研究:提供一些實(shí)際案例,如物流配送中的最優(yōu)化問(wèn)題、金融市場(chǎng)中的價(jià)格波動(dòng)分析等,讓學(xué)生感受導(dǎo)數(shù)的實(shí)際應(yīng)用。

2.拓展建議:

-閱讀拓展:鼓勵(lì)學(xué)生閱讀與導(dǎo)數(shù)相關(guān)的數(shù)學(xué)和物理書籍,如《微積分學(xué)導(dǎo)論》、《物理學(xué)中的數(shù)學(xué)方法》等,以加深對(duì)導(dǎo)數(shù)理論的理解。

-實(shí)踐拓展:建議學(xué)生參與數(shù)學(xué)建模競(jìng)賽或工程項(xiàng)目,將導(dǎo)數(shù)知識(shí)應(yīng)用于實(shí)際問(wèn)題中,提高解決實(shí)際問(wèn)題的能力。

-研究拓展:引導(dǎo)學(xué)生查閱相關(guān)學(xué)術(shù)論文,了解導(dǎo)數(shù)在科研領(lǐng)域的最新應(yīng)用和發(fā)展動(dòng)態(tài)。

-跨學(xué)科學(xué)習(xí):鼓勵(lì)學(xué)生將導(dǎo)數(shù)知識(shí)與其他學(xué)科知識(shí)相結(jié)合,如生物學(xué)中的種群增長(zhǎng)模型、化學(xué)中的反應(yīng)速率問(wèn)題等,以拓寬知識(shí)視野。

-互動(dòng)交流:組織學(xué)生進(jìn)行小組討論或課堂分享,讓學(xué)生交流導(dǎo)數(shù)在不同領(lǐng)域應(yīng)用的心得體會(huì),促進(jìn)知識(shí)的內(nèi)化和升華。課堂1.課堂評(píng)價(jià):

-提問(wèn):在課堂講解過(guò)程中,教師應(yīng)設(shè)計(jì)針對(duì)性的問(wèn)題,通過(guò)提問(wèn)的方式檢查學(xué)生對(duì)導(dǎo)數(shù)知識(shí)的理解和掌握程度。問(wèn)題應(yīng)涵蓋基礎(chǔ)概念、公式應(yīng)用以及實(shí)際案例分析,以確保學(xué)生能夠?qū)⒗碚撝R(shí)與實(shí)際應(yīng)用相結(jié)合。

-觀察:教師應(yīng)密切觀察學(xué)生在課堂上的反應(yīng)和參與程度,注意學(xué)生是否能夠跟隨教學(xué)進(jìn)度,是否積極參與討論和實(shí)踐活動(dòng)。觀察可以幫助教師發(fā)現(xiàn)學(xué)生的困惑和難點(diǎn),及時(shí)調(diào)整教學(xué)策略。

-測(cè)試:在課堂結(jié)束前,教師可以安排一次簡(jiǎn)短的測(cè)試,以測(cè)試學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況。測(cè)試題目應(yīng)覆蓋本節(jié)課的重點(diǎn)和難點(diǎn),幫助學(xué)生鞏固所學(xué)知識(shí),同時(shí)也為教師提供反饋,了解教學(xué)效果。

-反饋:教師應(yīng)及時(shí)收集學(xué)生的反饋信息,了解他們對(duì)教學(xué)內(nèi)容的理解程度和教學(xué)方式的適應(yīng)性。通過(guò)學(xué)生的反饋,教師可以及時(shí)調(diào)整教學(xué)方法和內(nèi)容,提高教學(xué)質(zhì)量。

2.作業(yè)評(píng)價(jià):

-批改:教師應(yīng)認(rèn)真批改學(xué)生的作業(yè),注意檢查作業(yè)的完成情況、解題過(guò)程的正確性和邏輯性。在批改作業(yè)時(shí),教師應(yīng)記錄學(xué)生常見(jiàn)的錯(cuò)誤類型,以便在課堂上進(jìn)行針對(duì)性的講解。

-點(diǎn)評(píng):在作業(yè)批改后,教師應(yīng)選擇具有代表性的作業(yè)進(jìn)行點(diǎn)評(píng),指出作業(yè)中的優(yōu)點(diǎn)和不足,給予學(xué)生具體的建議和指導(dǎo)。通過(guò)作業(yè)點(diǎn)評(píng),教師可以幫助學(xué)生認(rèn)識(shí)到自己的問(wèn)題,促進(jìn)他們的學(xué)習(xí)和進(jìn)步。

-反饋:教師應(yīng)及時(shí)將作業(yè)評(píng)價(jià)結(jié)果反饋給學(xué)生,鼓勵(lì)學(xué)生根據(jù)反饋進(jìn)行調(diào)整。對(duì)于表現(xiàn)優(yōu)秀的學(xué)生,教師應(yīng)給予表?yè)P(yáng)和鼓勵(lì),激發(fā)他們的學(xué)習(xí)熱情和自信心。

-追蹤:對(duì)于作業(yè)中存在的問(wèn)題,教師應(yīng)在后續(xù)的教學(xué)中進(jìn)行追蹤,確保學(xué)生能夠糾正錯(cuò)誤,掌握正確的知識(shí)和方法。課后作業(yè)1.已知函數(shù)\(f(x)=x^3-6x^2+9x+1\),求函數(shù)的單調(diào)區(qū)間和極值點(diǎn)。

答案:首先求導(dǎo)得到\(f'(x)=3x^2-12x+9\),令\(f'(x)=0\)解得\(x=1\)和\(x=3\)。通過(guò)分析導(dǎo)數(shù)的符號(hào)變化,得到函數(shù)的單調(diào)遞增區(qū)間為\((-\infty,1]\)和\([3,+\infty)\),單調(diào)遞減區(qū)間為\([1,3]\)。計(jì)算\(f(1)\)和\(f(3)\)得到極值點(diǎn)為\((1,5)\)和\((3,16)\)。

2.某工廠生產(chǎn)一種產(chǎn)品,其成本函數(shù)為\(C(x)=3x^2+4x+5\),其中\(zhòng)(x\)為生產(chǎn)的產(chǎn)品數(shù)量。求生產(chǎn)多少產(chǎn)品時(shí),平均成本最小。

答案:平均成本函數(shù)為\(\frac{C(x)}{x}=3x+4+\frac{5}{x}\),求導(dǎo)得到\(\fracjss33gu{dx}\left(\frac{C(x)}{x}\right)=3-\frac{5}{x^2}\),令導(dǎo)數(shù)等于零解得\(x=\sqrt[3]{5}\)。通過(guò)二次導(dǎo)數(shù)檢驗(yàn),得到當(dāng)生產(chǎn)\(\sqrt[3]{5}\)個(gè)產(chǎn)品時(shí),平均成本最小。

3.證明:對(duì)于函數(shù)\(f(x)=e^x\),其任意兩點(diǎn)間的割線斜率總是大于等于這兩點(diǎn)的切線斜率。

答案:設(shè)兩點(diǎn)的橫坐標(biāo)分別為\(a\)和\(b\)(\(a<b\)),則割線斜率為\(\frac{e^b-e^a}{b-a}\),切線斜率為\(e^x\)??紤]函數(shù)\(g(x)=e^x-\frac{e^b-e^a}{b-a}(x-a)\),求導(dǎo)得到\(g'(x)=e^x-\frac{e^b-e^a}{b-a}\)。由于\(e^x\)是增函數(shù),且\(e^a\leqe^x\leqe^b\),因此\(g'(x)\geq0\),所以\(g(x)\)是增函數(shù),從而割線斜率大于等于切線斜率。

4.一個(gè)開口向下的拋物線\(y=ax^2+bx+c\)與x軸相交于兩點(diǎn)\((x_1,0)\)和\((x_2,0)\),且\(x_1<x_2\)。證明:拋物線的頂點(diǎn)橫坐標(biāo)為\(\frac{x_1+x_2}{2}\)。

答案:拋物線的對(duì)稱軸為\(x=-\frac{2a}\),頂點(diǎn)橫坐標(biāo)即為對(duì)稱軸的橫坐標(biāo)。由于拋物線與x軸的交點(diǎn)對(duì)稱于對(duì)稱軸,所以\(x_1\)和\(x_2\)關(guān)于\(x=-\frac{2a}\)對(duì)稱,即\(x_1+x_2=-\frac{a}\),從而頂點(diǎn)橫坐標(biāo)為\(\frac{x_1+x_2}{2}=-\frac{2a}\)。

5.一個(gè)物體從靜止開始沿直線運(yùn)動(dòng),其加速度\(a(t)\)與時(shí)間\(t\)的關(guān)系為\(a(t)=4t\)。求物體在\(t=3\)秒時(shí)的速度和位移。

答案:由加速度的定義,速度\(v(t)\)是加速度關(guān)于時(shí)間的積分,即\(v(t)=\inta(t)dt=\int4tdt=2t^2+C\)。由于物體從靜止開始運(yùn)動(dòng),所以\(v(0)=0\),得到\(C=0\),因此\(v(t)=2t^2\)。在\(t=3\)秒時(shí),速度為\(v(3)=2\cdot3^2=18\

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論