版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省紹興市名校聯(lián)誼會2024屆中考沖刺卷數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.2018年10月24日港珠澳大橋全線通車,港珠澳大橋東起香港國際機場附近的香港口岸人工島,向西橫跨伶仃洋海域后連接珠海和澳門人工島,止于珠海洪灣,它是世界上最長的跨海大橋,被稱為“新世界七大奇跡之一”,港珠澳大橋總長度55000米,則數(shù)據(jù)55000用科學記數(shù)法表示為()A.55×105 B.5.5×104 C.0.55×105 D.5.5×1052.統(tǒng)計學校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、153.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°4.已知反比例函數(shù)y=-2A.圖象必經(jīng)過點(﹣1,2) B.y隨x的增大而增大C.圖象在第二、四象限內 D.若x>1,則0>y>-25.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補6.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km7.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶8.根據(jù)《天津市北大港濕地自然保護總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補償機制,生態(tài)補水78000000m1.將78000000用科學記數(shù)法表示應為()A.780×105B.78×106C.7.8×107D.0.78×1089.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.10.矩形ABCD的頂點坐標分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是_________.12.如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點,則下列結論:①△ADF≌△FEC;②四邊形ADEF為菱形;③.其中正確的結論是____________.(填寫所有正確結論的序號)13.小李和小林練習射箭,射完10箭后兩人的成績如圖所示,通常新手的成績不太穩(wěn)定,根據(jù)圖中的信息,估計這兩人中的新手是_____.14.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.15.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.16.若反比例函數(shù)y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.17.計算:的結果是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.19.(5分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據(jù)調查結果發(fā)現(xiàn)該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調查情況把學生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數(shù)為_______人,扇形統(tǒng)計圖中D類所對應扇形的圓心角為_____度,請補全條形統(tǒng)計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.20.(8分)如圖,AB∥CD,E、F分別為AB、CD上的點,且EC∥BF,連接AD,分別與EC、BF相交與點G、H,若AB=CD,求證:AG=DH.21.(10分)如圖,在平面直角坐標系xOy中,函數(shù)y=kx(x<0)的圖象經(jīng)過點A(-1,6),直線y=mx-2與x軸交于點B(①當n=-1時,判斷線段PD與PC的數(shù)量關系,并說明理由;②若PD≥2PC,結合函數(shù)的圖象,直接寫出n的取值范圍.22.(10分)如圖,曲線BC是反比例函數(shù)y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),拋物線y=﹣x2+2bx的頂點記作A.(1)求k的值.(2)判斷點A是否可與點B重合;(3)若拋物線與BC有交點,求b的取值范圍.23.(12分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?24.(14分)解方程:=1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將度55000用科學記數(shù)法表示為5.5×1.故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、B【解析】
根據(jù)加權平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.數(shù)據(jù)x1、x2、……、xn的加權平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據(jù)旋轉的性質可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質和三角形的內角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.4、B【解析】試題分析:根據(jù)反比例函數(shù)y=kx試題解析:A、(-1,2)滿足函數(shù)的解析式,則圖象必經(jīng)過點(-1,2);B、在每個象限內y隨x的增大而增大,在自變量取值范圍內不成立,則命題錯誤;C、命題正確;D、命題正確.故選B.考點:反比例函數(shù)的性質5、C【解析】
分清截線和被截線,根據(jù)平行線的性質進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質,熟記性質并準確識圖是解題的關鍵.6、B【解析】
正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.7、C【解析】解:設正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質,根據(jù)已知利用解直角三角形知識求出正六邊形面積是解題的關鍵.8、C【解析】
科學記數(shù)法記數(shù)時,主要是準確把握標準形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.【點睛】科學記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.9、D【解析】分析:連接OD,則根據(jù)垂徑定理可得出CE=DE,繼而將陰影部分的面積轉化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關鍵.10、B【解析】
由矩形的性質可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標.【詳解】解:∵四邊形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y軸,AD∥BC∥x軸
∴點D坐標為(5,4)
故選B.【點睛】本題考查了矩形的性質,坐標與圖形性質,關鍵是熟練掌握這些性質.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。\用勾股定理求解.【詳解】解:如圖,延長FP交AB于M,當FP⊥AB時,點P到AB的距離最?。逜C=6,CF=1,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=AF=1,∴FM==1,∵FP=FC=1,∴PM=MF-PF=1-1,∴點P到邊AB距離的最小值是1-1.故答案為:1-1.【點睛】本題考查了翻折變換,涉及到的知識點有直角三角形兩銳角互余、勾股定理等,解題的關鍵是確定出點P的位置.12、①②③【解析】
①根據(jù)三角形的中位線定理可得出AD=FE、AF=FC、DF=EC,進而可證出△ADF≌△FEC(SSS),結論①正確;②根據(jù)三角形中位線定理可得出EF∥AB、EF=AD,進而可證出四邊形ADEF為平行四邊形,由AB=AC結合D、F分別為AB、AC的中點可得出AD=AF,進而可得出四邊形ADEF為菱形,結論②正確;③根據(jù)三角形中位線定理可得出DF∥BC、DF=BC,進而可得出△ADF∽△ABC,再利用相似三角形的性質可得出,結論③正確.此題得解.【詳解】解:①∵D、E、F分別為AB、BC、AC的中點,∴DE、DF、EF為△ABC的中位線,∴AD=AB=FE,AF=AC=FC,DF=BC=EC.在△ADF和△FEC中,,∴△ADF≌△FEC(SSS),結論①正確;②∵E、F分別為BC、AC的中點,∴EF為△ABC的中位線,∴EF∥AB,EF=AB=AD,∴四邊形ADEF為平行四邊形.∵AB=AC,D、F分別為AB、AC的中點,∴AD=AF,∴四邊形ADEF為菱形,結論②正確;③∵D、F分別為AB、AC的中點,∴DF為△ABC的中位線,∴DF∥BC,DF=BC,∴△ADF∽△ABC,∴,結論③正確.故答案為①②③.【點睛】本題考查了菱形的判定與性質、全等三角形的判定與性質、相似三角形的判定與性質以及三角形中位線定理,逐一分析三條結論的正誤是解題的關鍵.13、小李.【解析】
解:根據(jù)圖中的信息找出波動性大的即可:根據(jù)圖中的信息可知,小李的成績波動性大,則這兩人中的新手是小李.故答案為:小李.14、1.【解析】
根據(jù)立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.【點睛】本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關鍵是畫出它的左視圖.15、或【解析】
作PH⊥CD,垂足為H,設運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質,勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關鍵.16、m>1【解析】∵反比例函數(shù)的圖象在其每個象限內,y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.17、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).【解析】
(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質、正切的定義計算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點睛】本題考查了切線的性質、直角三角形的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.19、48;105°;2【解析】試題分析:根據(jù)B的人數(shù)和百分比求出總人數(shù),根據(jù)D的人數(shù)和總人數(shù)的得出D所占的百分比,然后得出圓心角的度數(shù),根據(jù)總人數(shù)求出C的人數(shù),然后補全統(tǒng)計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據(jù)題意畫出表格,根據(jù)概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:
A1
A1
A2
A2
A1
√
√
A1
√
√
A2
√
√
A2
√
√
∴由上表可得:P(考點:統(tǒng)計圖、概率的計算.20、證明見解析.【解析】【分析】利用AAS先證明?ABH≌?DCG,根據(jù)全等三角形的性質可得AH=DG,再根據(jù)AH=AG+GH,DG=DH+GH即可證得AG=HD.【詳解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【點睛】本題考查了全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.21、(1)m=-2.(2)①判斷:PD=2PC.理由見解析;②-1≤n<0或n≤-3.【解析】
(1)利用代點法可以求出參數(shù)k,m;(2)①當n=-1時,即點P的坐標為(-1,2),即可求出點②根據(jù)①中的情況,可知n=-1或n=-3再結合圖像可以確定n的取值范圍;【詳解】解:(1)∵函數(shù)y=kx(x<0)的圖象G∴將點A(-1,6)代入y=∵直線y=mx-2與x軸交于點B(∴將點B(-1,0)代入y=mx-2(2)①判斷:PD=2PC.理由如下:當n=-1時,點P的坐標為(-1∴點C的坐標為(-2,∴PC=1,PD=2.∴PD=2PC.②由①可知當n=-1時PD=2PC所以由圖像可知,當直線y=-2n往下平移的時也符合題意,即0<-2n≤1,得-1≤n<0;當n=-3時,點P的坐標為(∴點C的坐標為(-4,∴PC=1,PD=2∴PD=2PC當-2n≥6時,即n≤-3,也符合題意,所以n的取值范圍為:-1≤n<0或n≤-3.【點睛】本題主要考查了反比例函數(shù)和一次函數(shù),熟練求反比例函數(shù)和一次函數(shù)解析式的方法、坐標與線段長度的轉化和數(shù)形結合思想是解題關鍵.22、(1)12;(2)點A不與點B重合;(3)【解析】
(1)把B、C兩點代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,從而求得k的值;(2)由拋物線解析式得到頂點A(b,b2),如果點A與點B重合,則有b=4,且b2=3,顯然不成立;(3)當拋物線經(jīng)過點B(4,3)時,解得,b=,拋物線右半支經(jīng)過點B;當拋物線經(jīng)過點C,解得,b=,拋物線右半支經(jīng)過點C;從而求得b的取值范圍為≤b≤.【詳解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函數(shù)的圖象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵拋物線y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若點A與點B重合,則有b=4,且b2=3,顯然不成立,∴點A不與點B重合;(3)當拋物線經(jīng)過點B(4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年標準駕校訓練場地租賃協(xié)議模板版B版
- 2024年版權轉讓合同:文學作品專用
- 2024-2030年中國客戶關系系統(tǒng)行業(yè)發(fā)展趨勢及投資創(chuàng)新模式分析報告
- 2024-2030年中國四柱液壓舉升機資金申請報告
- 2024年版本:大數(shù)據(jù)分析與咨詢服務合同
- 2024年物業(yè)租賃管理委托協(xié)議書
- 2024年標準無保險勞務派遣協(xié)議模板一
- 2024年全新移交合同協(xié)議書下載官方版3篇
- 2025年四川貨運從業(yè)資格證繼續(xù)再教育考試答案
- 2025標準商超供貨合同
- 昆明理工大學《自然語言處理》2023-2024學年第一學期期末試卷
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 水利水電工程施工生涯發(fā)展展示
- 病房護理組長年終述職
- 2024時事政治考試題庫(100題)
- 【新教材】統(tǒng)編版(2024)七年級上冊語文期末復習課件129張
- 國家開放大學《理工英語4》機考參考答案(第1-3套)
- 精神發(fā)育遲滯的護理查房
- 小水電站風險隱患排查表
- GA/T 1073-2013生物樣品血液、尿液中乙醇、甲醇、正丙醇、乙醛、丙酮、異丙醇和正丁醇的頂空-氣相色譜檢驗方法
- 調機品管理規(guī)定
評論
0/150
提交評論