




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京101中學2025屆高二上數(shù)學期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足,對任意,都有,則()A. B.C. D.2.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.3.設x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.5.已知拋物線的焦點為F,過點F分別作兩條直線,直線與拋物線C交于A、B兩點,直線與拋物線C交于D、E兩點,若與的斜率的平方和為2,則的最小值為()A.24 B.20C.16 D.126.某三棱錐的三視圖如圖所示,則該三棱錐內切球的表面積為A.B.C.D.7.如圖,在三棱錐中,,則三棱錐外接球的表面積是()A. B.C. D.8.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.19.已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是A. B.C. D.10.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°11.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.12.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的聚焦特點:從拋物線的焦點發(fā)出的光經過拋物線反射后,光線都平行于拋物線的對稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對稱軸的光線射向拋物線后的反射光線都會匯聚到拋物線的焦點處.已知拋物線,一條平行于拋物線對稱軸的光線從點向左發(fā)出,先經拋物線反射,再經直線反射后,恰好經過點,則該拋物線的標準方程為___________.14.與同一條直線都相交的兩條直線的位置關系是________15.若數(shù)列的前n項和,則其通項公式________16.若隨機變量,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值18.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經過坐標原點?若存在,求出的值;若不存在,說明理由.19.(12分)已知函數(shù).(1)討論的單調性;(2)任意,恒成立,求的取值范圍.20.(12分)已知,是橢圓:的左、右焦點,離心率為,點A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點,過的直線與橢圓C交于兩個不同點P、Q,直線BP與x軸交于點M,直線BQ與x軸交于點N,判斷是否為定值.若是,求出定值,若不是,請說明理由.21.(12分)已知拋物線:的焦點是圓與軸的一個交點.(1)求拋物線的方程;(2)若過點的直線與拋物線交于不同的兩點A、B,О為坐標原點,證明:.22.(10分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,求的最小值及此時的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】首先根據(jù)題設條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于??碱}.2、B【解析】根據(jù)拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.3、B【解析】利用充分條件、必要條件的定義可得出結論.【詳解】,因此,“”是“”必要不充分條件.故選:B.4、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環(huán)結構(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證5、C【解析】設兩條直線方程,與拋物線聯(lián)立,求出弦長的表達式,根據(jù)基本不等式求出最小值【詳解】拋物線的焦點坐標為,設直線:,直線:,聯(lián)立得:,所以,所以焦點弦,同理得:,所以,因為,所以,故選:C6、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內切球的半徑,再計算內切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設三棱錐內切球的半徑為,則由等體積法得,解得,所以該三棱錐內切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內切球表面積的應用問題,屬于中檔題7、A【解析】根據(jù)題意,將該幾何體放置于正方體中截得,進而轉化為求邊長為2的正方體的外接球,再求解即可.【詳解】解:因為在三棱錐中,,所以將三棱錐補形成正方體如圖所示,正方體的邊長為2,則體對角線長為,外接球的半徑為,所以外接球的表面積為,故選:.8、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因為兩直線垂直,所以,解得:或.故選:C9、D【解析】由于BF⊥x軸,故,設,由得,選D.考點:橢圓的簡單性質10、A【解析】按照斜率公式計算斜率,即可求得傾斜角.【詳解】由題意直線過,設直線斜率為,傾斜角為,則,故.故選:A.11、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內,又圓的圓心為則,此時直線過圓心;當直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.12、C【解析】利用兩直線平行的等價條件求得m,再結合充分必要條件進行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經驗證,當m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準確計算是關鍵,注意充分必要條件的判斷是基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的聚焦特點,經過拋物線后經過拋物線焦點,再經直線反射后經過點,則根據(jù)反射特點,列出相關方程,解出方程即可.【詳解】設光線與拋物線的交點為,拋物線的焦點為,則可得:拋物線的焦點為:則直線的方程為:設直線與直線的交點為,則有:解得:則過點且垂直于的直線的方程為:根據(jù)題意可知:點關于直線的對稱點在直線上設點,的中點為,則有:直線垂直于,則有:點在直線上,則有:點在直線上,則有:化簡得:又故故答案為:【點睛】直線關于直線對稱對稱,利用中點坐標公式和直線與直線垂直的特點建立方程,根據(jù)題意列出隱含的方程是關鍵14、平行,相交或者異面【解析】由空間中兩直線的位置關系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,15、【解析】由和計算【詳解】由題意,時,,所以故答案為:16、2【解析】根據(jù)給定條件利用二項分布的期望公式直接計算作答.【詳解】因為隨機變量,所以.故答案:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質可得,,如圖所示,以為坐標原點建立空間直角坐標系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問1詳解】證明:因為平面,平面,平面,所以,且,因為,如圖所示,以為坐標原點建立空間直角坐標系,則,,,,,,,所以,,,所以;【小問2詳解】,設平面的法向量為,則,即,令,有,設平面的法向量為,則,即,令,有,設平面和平面的夾角為,,所以平面和平面的夾角的余弦值為18、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數(shù),使以為直徑的圓經過坐標原點,設、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結合韋達定理可得出,即可得出結論.【小問1詳解】解:設點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設存在實數(shù),使以為直徑的圓經過坐標原點,設、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.19、(1)的遞增區(qū)間為,遞減區(qū)間為(2)【解析】(1)先求出函數(shù)的導數(shù),令、解出對應的解集,結合定義域即可得到函數(shù)的單調區(qū)間;(2)將不等式轉化為,令,利用導數(shù)討論函數(shù)分別在、時的單調性,進而求出函數(shù)的最值,即可得出答案.【小問1詳解】函數(shù)的定義域為,又當時,,當時,故的遞增區(qū)間為,遞減區(qū)間為.【小問2詳解】,即,令,有,,若,在上恒成立.則在上為減函數(shù),所以有若,由,可得,則在上增,所以在上存在使得,與題意不符合綜上所述,.20、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點的坐標寫出直線,的方程,進而知點,的坐標,再結合韋達定理,進行化簡,即可得解【小問1詳解】解:因為的周長為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設其方程為,,,,,聯(lián)立,得,所以,,因為點為,所以直線的方程為,所以點,,直線的方程為,所以點,,所以,即為定值21、(1)(2)證明見解析【解析】(1)由圓與軸的交點分別為,可得拋物線的焦點為,從而即可求解;(2)設直線為,聯(lián)立拋物線方程,由韋達定理及,求出即可得證.【小問1詳解】解:由題意知,圓與軸的交點分別為,則拋物線的焦點為,所以,所以拋物線方程為;【小問2詳解】證明:設直線為,聯(lián)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大數(shù)據(jù)存儲題目及答案
- DB1303T 165-2011 商品蛋雞場建設規(guī)范
- 黑龍江考安全員考試試題及答案
- 安全注意事項試題及答案
- 注冊建造師安全b證考試試題及答案
- 2025年木制餐具相關木制品項目提案報告模板
- 山東德州歷年中考作文題與審題指導(2015-2020)
- 商業(yè)場地租賃及品牌授權合同
- 節(jié)能減排項目場地調研合同范本
- 車輛借用與租賃保險合同范本
- 耕地占補平衡動態(tài)監(jiān)管系統(tǒng)培訓講解
- 電大可編程控制器應用實訓 形考任務2
- 實驗設計與數(shù)據(jù)處理
- 語C圈洗白手冊
- GB/T 1931-2009木材含水率測定方法
- 【不做為不擔當自查報告】不作為不擔當自查報告教師
- NB∕T 33009-2021 電動汽車充換電設施建設技術導則
- 滑板項目選材指標與標準
- YTHG 金 屬 波 紋 涵 管
- 有機化學第九章醛和酮
評論
0/150
提交評論