版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省錦州市聯(lián)合校2025屆數(shù)學(xué)高二上期末檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.2.設(shè),則是的A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.若,(),則,的大小關(guān)系是A. B.C. D.,的大小由的取值確定4.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-135.已知等差數(shù)列的前n項和為,且,,則為()A. B.C. D.6.如圖,兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.7.命題“,”的否定形式是()A., B.,C., D.,8.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.9.已知隨機變量X服從二項分布X~B(4,),()A. B.C. D.10.設(shè),是兩個不同的平面,是直線且.“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.設(shè),若函數(shù),有大于零的極值點,則A. B.C. D.12.已知函數(shù),的導(dǎo)函數(shù),的圖象如圖所示,則的極值情況為()A.2個極大值,1個極小值 B.1個極大值,1個極小值C.1個極大值,2個極小值 D.1個極大值,無極小值二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為為的中點,為面內(nèi)一點.若點到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________14.已知為拋物線上任意一點,為拋物線的焦點,為平面內(nèi)一定點,則的最小值為__________.15.已知為坐標(biāo)原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.16.九連環(huán)是中國的一種古老智力游對,它用九個圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個精美的由九個翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個圓環(huán),用表示按照某種規(guī)則解下個圓環(huán)所需的銀和翠玉制九連環(huán)最少移動次數(shù),且數(shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓C:的左右焦點分別為,,P為橢圓C上一點.(1)當(dāng)P為橢圓C的上頂點時,求的余弦值;(2)直線與橢圓C交于A,B,若,求k18.(12分)如圖,已知圓C與y軸相切于點,且被x軸正半軸分成的兩段圓弧長之比為1∶2(1)求圓C的方程;(2)已知點,是否存在弦被點P平分?若存在,求直線的方程;若不存在,請說明理由19.(12分)已知數(shù)列是首項為1,公差不為0的等差數(shù)列,且成等比數(shù)列.數(shù)列的前項的和為,且滿足.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.21.(12分)如圖,正方體的棱長為,分別是的中點,點在棱上,().(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時,最大?最大值為多少?(Ⅱ)若平面,證明:平面平面.22.(10分)為增強市民的環(huán)境保護意識,某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護宣傳小組,現(xiàn)把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內(nèi)的人數(shù)為.(1)若用分層抽樣的方法從年齡在、、內(nèi)的志愿者中抽取名參加某社區(qū)的宣傳活動,再從這名志愿者中隨機抽取名志愿者做環(huán)境保護知識宣講,求這名環(huán)境保護知識宣講志愿者中至少有名年齡在內(nèi)的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護知識宣講的志愿者,給甲、乙各隨機派發(fā)價值元、元、元的紀念品一件,求甲的紀念品不比乙的紀念品價值高的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】對函數(shù)求導(dǎo),由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A2、B【解析】,,所以是必要不充分條件,故選B.考點:1.指、對數(shù)函數(shù)的性質(zhì);2.充分條件與必要條件.3、A【解析】∵且,∴,又,∴,故選A.4、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因為圓,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.5、C【解析】直接由等差數(shù)列求和公式結(jié)合,求出,再由求和公式求出即可.【詳解】由題意知:,解得,則.故選:C.6、C【解析】設(shè)D為線段AB的中點,求得,在中,可得.進而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.7、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A8、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.9、D【解析】利用二項分布概率計算公式,計算出正確選項.【詳解】∵隨機變量X服從二項分布X~B(4,),∴.故選:D.10、B【解析】,得不到,因為可能相交,只要和的交線平行即可得到;,,∴和沒有公共點,∴,即能得到;∴“”是“”的必要不充分條件.故選B考點:必要條件、充分條件與充要條件的判斷.【方法點晴】考查線面平行的定義,線面平行的判定定理,面面平行的定義,面面平行的判定定理,以及充分條件、必要條件,及必要不充分條件的概念,屬于基礎(chǔ)題;并得不到,根據(jù)面面平行的判定定理,只有內(nèi)的兩相交直線都平行于,而,并且,顯然能得到,這樣即可找出正確選項.11、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點即有正根,當(dāng)有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點:利用導(dǎo)數(shù)研究函數(shù)的極值12、B【解析】根據(jù)圖象判斷的正負,再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個根即為與的交點的橫坐標(biāo),當(dāng)時,,當(dāng)時,,即,所以為的極大值點,為的極大值,當(dāng)時,,即,所以為的極小值點,為的極小值,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由題意可知,點在平面內(nèi)的軌跡是以為焦點,直線為準線的拋物線,如圖在底面建立平面直角坐標(biāo)系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時,切點為點,此時的面積最小,則三棱錐體積的最小【詳解】因為為面內(nèi)一點,且點到面的距離與到直線的距離相等,所以點在平面內(nèi)的軌跡是以為焦點,直線為準線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標(biāo)系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時切點為,且的面積最小,因為點到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:14、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準線為,設(shè)點在準線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點共線時最小,為.故答案為:3.15、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結(jié)果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設(shè)點,則,不妨設(shè)點為直線上的點,則,,所以,.故答案為:.16、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時,,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用余弦定理可求頂角的余弦值.(2)聯(lián)立直線方程和橢圓方程,消元后利用韋達定理結(jié)合弦長公式可求的值.【小問1詳解】當(dāng)為橢圓的上頂點時,,在中,由余弦定理知.【小問2詳解】設(shè),,將直線與橢圓:聯(lián)立得:,因為直線過焦點,故恒成立,又,由弦長公式得,化簡整理得:,解得.18、(1).(2).【解析】(1)由已知得圓心C在直線上,設(shè)圓C與x軸的交點分別為E、F,則有,,圓心C的坐標(biāo)為(2,1),由此求得圓C的標(biāo)準方程;(2)假設(shè)存在弦被點P平分,有,由此求得直線AB的斜率可得其方程再檢驗,直線AB與圓C是否相交即可.小問1詳解】解:因為圓C與y軸相切于點,所以圓心C在直線上,設(shè)圓C與x軸的交點分別為E、F,由圓C被x軸分成的兩段弧長之比為2∶1,得,所以,圓心C的坐標(biāo)為(2,1),所以圓C的方程為;【小問2詳解】解:因為點,有,所以點P在圓C的內(nèi)部,假設(shè)存在弦被點P平分,則,又,所以,所以直線AB的方程為,即,檢驗,圓心C到直線AB的距離為,所以直線AB與圓C相交,所以存在弦被點P平分,此時直線的方程為.19、(1),(2)【解析】(1)設(shè)數(shù)列公差為,由成等比數(shù)列求得,可得.利用求得;(2)利用錯位相減求和即可.【小問1詳解】設(shè)數(shù)列公差為,由成等比數(shù)列有:,解得:,所以,數(shù)列,當(dāng)即,,解得:,當(dāng)時,有,所以,得:.又,所以數(shù)列為以為首項,公比為的等比數(shù)列,所以數(shù)列的通項公式為:.【小問2詳解】,,,得,,化簡得:.20、(1)證明見解析.(2)【解析】(1)利用線面垂直的性質(zhì)證明出;(2)利用等體積轉(zhuǎn)換法,先求出O到平面AEF的距離,再求C到平面的距離.【小問1詳解】在矩形中,.因為平面平面,平面平面,所以平面,所以.【小問2詳解】設(shè)AC與BD的交點為O,則C到平面AEF的距離為O到平面AEF的距離的2倍.因為菱形ABCD的邊長為4且,所以.因為矩形BDFE的面積為8,所以BE=2.,,則三棱錐的體積.在△AEF中,,所以.記O到平面AEF的距離為d.由得:,解得:,所以C到平面AEF的距離為.21、(Ⅰ),.(Ⅱ)見解析.【解析】(Ⅰ)由題可知,,由和,結(jié)合基本不等式可求最值;(Ⅱ)連接交于點,則為的中點,可得為中點,易證得,得平面,所以,進而可證得,,所以平面EFM,因為平面,從而得證.【詳解】(Ⅰ)由題可知,,.所以(當(dāng)且僅當(dāng),即時等號成立)所以當(dāng)時,最大,最大值為.(Ⅱ)連接交于點,則為的中點,因為平面,平面平面,所以,所以為中點.連接,因為為中點,所以,因為,所以.因為平面,平面,所以,因為,所以平面,又平面,所以.同理,因為,所以平面EFM,因為平面,所以平面平面B1D1M.22、(1);(2).【解析】(1)將名志愿者進行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因為志愿者年齡在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年私人房產(chǎn)買賣合同環(huán)保要求與執(zhí)行標(biāo)準3篇
- 2025年度路演展示廳清潔維護服務(wù)租賃合同4篇
- 二零二五版水利工程開工合同范例2篇
- 2025年度多功能培訓(xùn)學(xué)校教室租賃合同范本3篇
- 2025年度廚師行業(yè)人才引進與培養(yǎng)服務(wù)協(xié)議3篇
- 2025年度文化藝術(shù)品樣品展覽與上樣合作協(xié)議3篇
- 2024綜藝節(jié)目拍攝基地租賃合同
- 2025年物業(yè)保潔外包服務(wù)合同(含節(jié)能環(huán)保服務(wù))3篇
- 2025年度智能電網(wǎng)建設(shè)采購戰(zhàn)略合作協(xié)議合同范本3篇
- 2025年消防給排水系統(tǒng)節(jié)能改造與優(yōu)化合同3篇
- 人教版小學(xué)數(shù)學(xué)(2024)一年級下冊第一單元 認識平面圖形綜合素養(yǎng)測評 B卷(含答案)
- 企業(yè)年會攝影服務(wù)合同
- 電商運營管理制度
- 二零二五年度一手房購房協(xié)議書(共有產(chǎn)權(quán)房購房協(xié)議)3篇
- 2025年上半年上半年重慶三峽融資擔(dān)保集團股份限公司招聘6人易考易錯模擬試題(共500題)試卷后附參考答案
- 城市公共交通運營協(xié)議
- 內(nèi)燃副司機晉升司機理論知識考試題及答案
- 2024北京東城初二(上)期末語文試卷及答案
- 2024設(shè)計院與職工勞動合同書樣本
- 2024年貴州公務(wù)員考試申論試題(B卷)
- 電工高級工練習(xí)題庫(附參考答案)
評論
0/150
提交評論