




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河北省望都中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項和為2.在三棱錐中,,D為上的點,且,則()A. B.C. D.3.下列求導(dǎo)運算正確的是()A. B.C. D.4.方程表示的曲線經(jīng)過的一點是()A. B.C. D.5.直線的傾斜角為()A.0 B.C. D.6.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.7.已知,則點到平面的距離為()A. B.C. D.8.已知數(shù)列滿足,則()A. B.C. D.9.已知數(shù)列的前項和為,滿足,,,則()A. B.C.,,成等差數(shù)列 D.,,成等比數(shù)列10.若集合,,則A. B.C. D.11.已知集合,則()A. B.C. D.12.設(shè)正方體的棱長為,則點到平面的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F為,過點F的直線交該拋物線的準(zhǔn)線于點A,與該拋物線的一個交點為B,且,則______14.將參加冬季越野跑的名選手編號為:,采用系統(tǒng)抽樣方法抽取一個容量為的樣本,把編號分為組后,第一組的到這個編號中隨機抽得的號碼為,這名選手穿著三種顏色的衣服,從到穿紅色衣服,從到穿白色衣服,從到穿黃色衣服,則抽到穿白色衣服的選手人數(shù)為__________15.已知,,,…,為拋物線:上的點,為拋物線的焦點.在等比數(shù)列中,,,,…,.則的橫坐標(biāo)為__________16.已知等比數(shù)列滿足:,,,則公比______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列的前項和為,,.?dāng)?shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由18.(12分)已知點A(0,-2),橢圓E:(a>b>0)的離心率為,F(xiàn)是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.(1)求E的方程;(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.19.(12分)已知向量,(1)求;(2)求;(3)若(),求的值20.(12分)已知圓:,點A是圓上一動點,點,點是線段的中點.(1)求點的軌跡方程;(2)直線過點且與點的軌跡交于A,兩點,若,求直線的方程.21.(12分)已知函數(shù),.(1)當(dāng)時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(?。┣蟮娜≈捣秶?;(ⅱ)證明:.22.(10分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由等差數(shù)列的通項公式判定選項A正確;利用等比數(shù)列的通項公式求出,即判定選項B錯誤;利用對數(shù)的運算和等差數(shù)列的定義判定選項C正確;利用錯位相減法求和,即判定選項D正確.【詳解】對于A:由條件可得,,即選項A正確;對于B:由條件可得,,即選項B錯誤;對于C:因為,所以,則,即數(shù)列是首項和公差均為的等差數(shù)列,即選項C正確;對于D:,設(shè)數(shù)列的前項和為,則,,上面兩式相減可得,所以,即選項D正確.故選:B.2、B【解析】根據(jù)幾何關(guān)系以及空間向量的線性運算即可解出【詳解】因為,所以,即故選:B3、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.4、C【解析】當(dāng)時可得,可得答案.【詳解】當(dāng)時可得所以方程表示的曲線經(jīng)過的一點是,且其它點都不滿足方程,故選:C5、D【解析】根據(jù)斜率與傾斜角的關(guān)系求解即可.【詳解】由題的斜率,故傾斜角的正切值為,又,故.故選:D.6、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.7、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點到平面的距離為,所以點到平面的距離為.故選:A8、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D9、C【解析】寫出數(shù)列前幾項,觀察規(guī)律,找到數(shù)列變化的周期,再依次去判斷各項的說法即可解決.【詳解】數(shù)列中,,,,則此數(shù)列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數(shù)列的各項是周期為6數(shù)值循環(huán)重復(fù)的一列數(shù),選項A:,,則.判斷錯誤;選項B:由,可知當(dāng)時,.判斷錯誤;選項C:,則,即,,成等差數(shù)列.判斷正確;選項D:,,則,,即,,不能構(gòu)成等比數(shù)列.判斷錯誤.故選:C10、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關(guān)系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎(chǔ)題.11、D【解析】由集合的關(guān)系及交集運算,逐項判斷即可得解.【詳解】因為集合,,所以,,.故選:D.【點睛】本題考查了集合關(guān)系的判斷及集合的交集運算,考查了運算求解能力,屬于基礎(chǔ)題.12、D【解析】建立空間直角坐標(biāo)系,根據(jù)空間向量所學(xué)點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標(biāo)系,以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點到平面的距離為,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作垂直于準(zhǔn)線,垂足為,準(zhǔn)線與軸交于點,根據(jù)已知條件,利用幾何方法,結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點坐標(biāo),準(zhǔn)線方程,作垂直于準(zhǔn)線于,準(zhǔn)線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.14、【解析】,所以抽到穿白色衣服的選手號碼為,共15、【解析】利用在拋物線上可求得,結(jié)合等比數(shù)列的公比可求得,利用拋物線的焦半徑公式即可求得結(jié)果.【詳解】在拋物線上,,解得:,拋物線;數(shù)列為等比數(shù)列,又,,公比,,即,解得:,即的橫坐標(biāo)為.故答案為:.16、【解析】根據(jù)等比數(shù)列的通項公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當(dāng)時,,當(dāng)時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.18、(1)(2)【解析】設(shè)出,由直線的斜率為求得,結(jié)合離心率求得,再由隱含條件求得,即可求橢圓方程;(2)點軸時,不合題意;當(dāng)直線斜率存在時,設(shè)直線,聯(lián)立直線方程和橢圓方程,由判別式大于零求得的范圍,再由弦長公式求得,由點到直線的距離公式求得到的距離,代入三角形面積公式,化簡后換元,利用基本不等式求得最值,進一步求出值,則直線方程可求.試題解析:(1)設(shè),因為直線的斜率為,所以,.又解得,所以橢圓的方程為.(2)解:設(shè)由題意可設(shè)直線的方程為:,聯(lián)立消去得,當(dāng),所以,即或時.所以點到直線的距離所以,設(shè),則,,當(dāng)且僅當(dāng),即,解得時取等號,滿足所以的面積最大時直線的方程為:或.【方法點晴】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求最值,屬于難題.解決圓錐曲線中的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將圓錐曲線中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題(2)就是用的這種思路,利用均值不等式法求三角形最值的.19、(1)(2)(3)【解析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標(biāo)表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運算律即可得解.【小問1詳解】解:;【小問2詳解】解:;【小問3詳解】解:因為,所以,即,解得.20、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點為,點,用x,y表示,代入方程即可;(2)分l斜率存在和不存在進行討論,根據(jù)弦長求出l方程.【小問1詳解】設(shè)線段中點為,點,,,,,,即點C的軌跡方程為.【小問2詳解】直線l的斜率不存在時,l為x=1,代入得,則弦長滿足題意;直線l斜率存在時,設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.21、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】(1)求出,,利用導(dǎo)數(shù)的幾何意義即可求得切線方程;(2)(?。└鶕?jù)題意對參數(shù)分類討論,當(dāng)時,等價轉(zhuǎn)化,且構(gòu)造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關(guān)系,求得并構(gòu)造函數(shù),利用導(dǎo)數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當(dāng)時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(ⅰ)因為,故可得,因為,則當(dāng)時,,則,無零點,不滿足題意;當(dāng)時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍?,若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度高級管理人員競業(yè)禁止合同
- 農(nóng)業(yè)生產(chǎn)資金投入與財務(wù)管理手冊
- 開幕式致辭與未來發(fā)展展望報告
- 員工年終工作總結(jié)報告模板集萃
- 互聯(lián)網(wǎng)廣告投放及推廣合作協(xié)議
- 農(nóng)業(yè)生產(chǎn)投入品減量增效技術(shù)指導(dǎo)手冊
- 農(nóng)業(yè)產(chǎn)業(yè)扶貧政策及項目申報指導(dǎo)手冊
- 智能家居技術(shù)研發(fā)推廣合作協(xié)議
- 健身房客戶服務(wù)手冊
- 健身房健身器材租賃合同
- 2.0MWp屋頂太陽能分布式光伏發(fā)電項目監(jiān)理大綱2
- 小學(xué)夢想開《去遠方》教學(xué)設(shè)計
- Q∕SY 06349-2019 油氣輸送管道線路工程施工技術(shù)規(guī)范
- CEO自戀及其經(jīng)濟后果研究:以格力電器為例
- 紅土鎳礦濕法冶煉技術(shù)綜述
- 六鑫伺服刀塔說明書LS系列
- 19.骨折術(shù)后內(nèi)固定取出臨床路徑
- 水利水電工程金屬結(jié)構(gòu)與機電設(shè)備安裝安全技術(shù)規(guī)程
- 腎內(nèi)科臨床診療規(guī)范(南方醫(yī)院)
- 珍愛生命 安全第一 中小學(xué)主題教育班會
- 二十八星宿(課堂PPT)
評論
0/150
提交評論