![中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第1頁](http://file4.renrendoc.com/view7/M02/3E/16/wKhkGWcP9OGATPKaAAHrAdFvJy8896.jpg)
![中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第2頁](http://file4.renrendoc.com/view7/M02/3E/16/wKhkGWcP9OGATPKaAAHrAdFvJy88962.jpg)
![中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第3頁](http://file4.renrendoc.com/view7/M02/3E/16/wKhkGWcP9OGATPKaAAHrAdFvJy88963.jpg)
![中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第4頁](http://file4.renrendoc.com/view7/M02/3E/16/wKhkGWcP9OGATPKaAAHrAdFvJy88964.jpg)
![中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題含解析_第5頁](http://file4.renrendoc.com/view7/M02/3E/16/wKhkGWcP9OGATPKaAAHrAdFvJy88965.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中衛(wèi)市第一中學2025屆數(shù)學高二上期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.22.已知雙曲線C:的右焦點為,一條漸近線被圓截得的弦長為2b,則雙曲線C的離心率為()A. B.C.2 D.3.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關于去向的地點僅對一個).根據以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南4.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.5.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.6.若指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點,則實數(shù)的取值范圍是()A. B.C. D.7.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進行質檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.88.已知函數(shù)在處取得極小值,則()A. B.C. D.9.已知分別是等差數(shù)列的前項和,且,則()A. B.C. D.10.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準線與坐標軸的交點,則的最大值是()A.2 B.C. D.11.已知數(shù)列的通項公式是,則()A10100 B.-10100C.5052 D.-505212.某幾何體的三視圖如圖所示,則其對應的幾何體是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某單位現(xiàn)有三個部門競崗,甲、乙、丙三人每人只競選一個部門,設事件A為“三人競崗部門都不同”,B為“甲獨自競崗一個部門”,則______.14.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________15.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______16.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點D到平面ACE的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過定點,且與直線相切,圓心的軌跡為(1)求動點的軌跡方程;(2)已知直線交軌跡于兩點,,且中點的縱坐標為,則的最大值為多少?18.(12分)設{an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4(Ⅰ)求{an}的通項公式;(Ⅱ)設{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn19.(12分)為了了解高二段1000名學生一周課外活動情況,隨機抽取了若干學生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8(1)求第一組數(shù)據的頻率并計算調查中隨機抽取了多少名學生的一周課外活動時間;(2)求這組數(shù)據的平均數(shù)20.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值21.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.22.(10分)已知數(shù)列的前n項和為,且,,數(shù)列滿足,.(1)求和的通項公式;(2)求數(shù)列{}的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.2、A【解析】求出圓心到漸近線的距離,根據弦長建立關系即可求解.【詳解】雙曲線的漸近線方程為,即,則點到漸近線的距離為,因為弦長為,圓半徑為,所以,即,因為,所以,則雙曲線的離心率為.故選:A.3、D【解析】根據題意,先假設甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設錯誤.假設乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設滿足題意,故甲去了云南.故選:D4、C【解析】由題意可得,根據三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題5、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質.點評:橢圓圖形當中有一個特征三角形,它的三邊分別為a,b,c.因而可據此求出離心率.6、A【解析】分析可知直線與曲線在上的圖象有兩個交點,令可得出,令,問題轉化為直線與曲線有兩個交點,利用導數(shù)分析函數(shù)的單調性與極值,數(shù)形結合可得出實數(shù)的取值范圍.【詳解】當時,,,此時兩個函數(shù)的圖象無交點;當時,由得,可得,令,其中,則直線與曲線有兩個交點,,當時,,此時函數(shù)單調遞增,當時,,此時函數(shù)單調遞減,則,且當時,,作出直線與曲線如下圖所示:由圖可知,當時,即當時,指數(shù)函數(shù)(且)與三次函數(shù)的圖象恰好有兩個不同的交點.故選:A.7、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因為含有編號66的商品被抽到,故其他能被抽到的是,當時,,其他三個選項均不合要求,故選:A8、A【解析】由導數(shù)與極值與最值的關系,列式求實數(shù)的值.【詳解】由條件可知,,,解得:,,檢驗,時,當,得或,函數(shù)的單調遞增區(qū)間是和,當,得,所以函數(shù)的單調遞減區(qū)間是,所以當時,函數(shù)取得極小值,滿足條件.所以.故選:A9、D【解析】利用及等差數(shù)列的性質進行求解.【詳解】分別是等差數(shù)列的前項和,故,且,故,故選:D10、B【解析】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,則,當直線PA與拋物線相切時,最小,取得最大值,設出直線方程得到直線和拋物線相切時的點P的坐標,然后進行計算得到結果.【詳解】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,所以則,當最小時,則值最大,所以當直線PA與拋物線相切時,θ最大,即最小,由題意可得,設切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標為1,即P的坐標,所以,,所以的最大值為:,故選:B【點睛】關鍵點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義.一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關,實現(xiàn)點點距和點線距的轉化11、D【解析】根據已知條件,用并項求和法即可求得結果.【詳解】∵∴∴.故選:D.12、A【解析】根據三視圖即可還原幾何體.【詳解】根據三視圖,特別注意到三視圖中對角線的位置關系,容易判斷A正確.【點睛】本題主要考查了三視圖,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據給定條件求出事件B和AB的概率,再利用條件概率公式計算作答.【詳解】依題意,,,所以.故答案:14、【解析】先由,根據橢圓的定義,求出,,再由余弦定理,根據,即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據余弦定理可得,解得(負值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.15、##【解析】作直線l,拋物線準線且交y軸于A點,根據拋物線定義有,進而判斷目標式最小時的位置關系,結合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標式最小,即最小,當共線時,又,此時.故答案為:.16、【解析】建立合適空間直角坐標系,分別表示出點的坐標,然后求解出平面的一個法向量,利用公式求解出點到平面的距離.【詳解】以AB的中點O為坐標原點,分別以OE,OB所在的直線為x軸、y軸,過垂直于平面的方向為軸,建立如下圖所示的空間直角坐標系,則,,設平面ACE的法向量,則,即,令,∴故點D到平面ACE的距離.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設直線方程,聯(lián)立方程組,結合根與系數(shù)關系可得,再根據二次函數(shù)的性質可得最值.【小問1詳解】由題設點到點的距離等于它到的距離,點的軌跡是以為焦點,為準線的拋物線,所求軌跡的方程為;【小問2詳解】由題意易知直線的斜率存在,設中點為,直線的方程為,聯(lián)立直線與拋物線,得,,且,,又中點為,即,,故恒成立,,,所以,當時,取最大值為.【點睛】(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數(shù)的關系;(2)有關直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式18、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數(shù)的等比數(shù)列,設其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項公式(Ⅱ)由{bn}是首項為1,公差為2的等差數(shù)列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數(shù)列與等差數(shù)列的前n項和公式即可求得數(shù)列{an+bn}的前n項和Sn解:(Ⅰ)∵設{an}是公比為正數(shù)的等比數(shù)列∴設其公比為q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通項公式為an=2×2n﹣1=2n(Ⅱ)∵{bn}是首項為1,公差為2的等差數(shù)列∴bn=1+(n﹣1)×2=2n﹣1∴數(shù)列{an+bn}的前n項和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2點評:本題考查了等比數(shù)列的通項公式及數(shù)列的求和,注意題目條件的應用.在用等比數(shù)列的前n項和公式時注意辨析q是否為1,只要簡單數(shù)字運算時不出錯,問題可解,是個基礎題19、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數(shù),總數(shù)之間的關系可求解學生人數(shù);(2)平均數(shù):頻率分布直方圖中每個小長方形的中點乘以對應的長方形面積之和;【小問1詳解】設圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數(shù)據的頻率為,設調查中隨機抽取了n名學生的課外活動時間,則,得,所以調查中隨機抽取了50名學生的課外活動時間小問2詳解】由題意,這組數(shù)據的平均數(shù)(分鐘)20、(1);(2)4【解析】(1)根據奇函數(shù)的定義,代入化簡得,進而可得的值;(2)設,可得,根據奇函數(shù)的性質得,進而可得結果.【詳解】解:(1)因為是奇函數(shù),所以,即,整理得,又,所以(2)設,因為,所以因為是奇函數(shù),所以所以【點睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.21、(1);(2).【解析】(1)根據導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】設曲線的切點坐標為,由,所以過該切點的切線的斜率為,因此該切線方程為:,因為直線與函數(shù)的圖象相切,所以,因為直線與函數(shù)的圖象相切,且函數(shù)過原點,所以曲線的切點為,于是有,即;【小問2詳解】由可得:,當時,顯然不成立,當時,由,設函數(shù),,,當時,,單調遞減,當時,,單調遞減,當時,,單調遞增,因此當時,函數(shù)有最小值,最小值為,而,當時,,函數(shù)圖象如下圖所示:方程有兩個不同的實數(shù)解,轉化為函數(shù)和函數(shù)的圖象,在當時,有兩個不同的交點,由圖象可知:,故a的取值范圍為.【點睛】關鍵點睛:利用常變量分離法,結合轉化法進行求解是解題的關鍵.22、(1);;(2)【解析】(1)求數(shù)列的通項公式主要利用求解,分情況求解后要驗證是否滿足的通項公式,將求得的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025小學二年級學習計劃(32篇)
- 技術顧問勞務合同(3篇)
- 施工合同書(32篇)
- 2024-2025學年廣東省深圳市龍崗區(qū)德琳學校高二上學期第一次考試歷史試卷
- 2024-2025學年第15課貨幣的使用與世界貨幣體系的形成-勤徑學升高中歷史選擇性必修1同步練測(統(tǒng)編版2019)
- 2025年協(xié)同開發(fā)建房協(xié)議版式
- 2025年農業(yè)合作養(yǎng)殖協(xié)議模版
- 2025年供應鏈優(yōu)化供應商協(xié)議
- 2025年雙方合作演藝協(xié)議
- 2025年交易合同附加條件標準文本
- 2024年高考英語讀后續(xù)寫高分寶典專題08讀后續(xù)寫肢體動作描寫積累1(詞-句-文)講義
- 商業(yè)與公積金貸款政策
- 年獸的故事之The Legend of Nian
- 初中美術教學策略與方法
- 甲流護理查房病例
- 概率論與數(shù)理統(tǒng)計智慧樹知到課后章節(jié)答案2023年下四川師范大學
- 2024屆高考作文主題訓練:時評類(含解析)
- 260噸汽車吊地基承載力驗算
- 譯林版英語小學四年級下冊-課文翻譯(英漢對照)
- Vue.js前端開發(fā)實戰(zhàn)(第2版)全套完整教學課件
- 公司與個人合伙買車經營協(xié)議書
評論
0/150
提交評論