版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市靜安區(qū)高一數(shù)學第一學期期末質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓的半徑為,該圓上長為的弧所對的圓心角是A. B.C. D.2.已知,現(xiàn)要將兩個數(shù)交換,使,下面語句正確的是A. B.C. D.3.在平行四邊形中,,,為邊的中點,,則()A.1 B.2C.3 D.44.某學校大門口有一座鐘樓,每到夜晚燈光亮起都是一道靚麗的風景,有一天因停電導致鐘表慢10分鐘,則將鐘表撥快到準確時間分針所轉過的弧度數(shù)是()A. B.C. D.5.已知函數(shù)的圖像如圖所示,則A. B.C. D.6.若方程在區(qū)間內有兩個不同的解,則A. B.C. D.7.已知函數(shù)在上是增函數(shù),則的取值范圍是()A. B.C. D.8.已知圓,圓,則兩圓的位置關系為A.相離 B.相外切C.相交 D.相內切9.已知角的終邊經過點,且,則的值為()A. B.C. D.10.如圖()四邊形為直角梯形,動點從點出發(fā),由沿邊運動,設點運動的路程為,面積為.若函數(shù)的圖象如圖(),則的面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設是定義在上且周期為2的函數(shù),在區(qū)間上,其中.若,則的值是____________.12.已知扇形的面積為4,圓心角為2弧度,則該扇形的弧長為_________13.若函數(shù)滿足:對任意實數(shù),有且,當時,,則時,________14.函數(shù)的定義域是______15.設函數(shù),若函數(shù)在上的最大值為M,最小值為m,則______16.如圖,已知四棱錐P-ABCD,底面ABCD為正方形,PA⊥平面ABCD.給出下列命題:①PB⊥AC;②平面PAB與平面PCD的交線與AB平行;③平面PBD⊥平面PAC;④△PCD為銳角三角形.其中正確命題的序號是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),若函數(shù)的圖象過點,(1)求的值;(2)若,求實數(shù)的取值范圍;(3)若函數(shù)有兩個零點,求實數(shù)的取值范圍.18.已知正方體ABCD-的棱長為2.(1)求三棱錐的體積;(2)證明:.19.設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(?UA)∪(?UB);(Ⅱ)設集合C={x|m+1<x<2m-1},若B∩C=C,求實數(shù)m的取值范圍20.在平面直角坐標系中,角的頂點與坐標原點重合,始邊與軸的非負半軸重合,終邊與單位圓相交于點A,已知點A的縱坐標為.(1)求的值;(2)求的值.21.在平面直角坐標系中,已知角的頁點為原點,始邊為軸的非負半軸,終邊經過點.(1)求的值;(2)求旳值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由弧長公式可得:,解得.考點:弧度制.2、D【解析】通過賦值語句,可得,故選D.3、D【解析】以為坐標原點,建立平面直角坐標系,設,再利用平面向量的坐標運算求解即可【詳解】以坐標原點,建立平面直角坐標系,設,則,,,,故,由可得,即,化簡得,故,故,,故故選:D4、A【解析】由題可得分針需要順時針方向旋轉.【詳解】分針需要順時針方向旋轉,即弧度數(shù)為.故選:A.5、B【解析】本題首先可以通過圖像得出函數(shù)的周期,然后通過函數(shù)周期得出的值,再然后通過函數(shù)過點求出的值,最后將帶入函數(shù)解析式即可得出結果【詳解】因為由圖像可知,解得,所以,,因為由圖像可知函數(shù)過點,所以,解得,取,,,所以,故選B【點睛】本題考查了三角函數(shù)的相關性質,主要考查了三角函數(shù)圖像的相關性質,考查了三角函數(shù)的周期性的求法,考查計算能力,考查數(shù)形結合思想,是中檔題6、C【解析】由,得,所以函數(shù)的圖象在區(qū)間內的對稱軸為故當方程在區(qū)間內有兩個不同的解時,則有選C7、C【解析】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍【詳解】若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則當x∈[2,+∞)時,x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)即,f(2)=4+a>0解得﹣4<a≤4故選C【點睛】本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調區(qū)間,其中根據(jù)復合函數(shù)的單調性,構造關于a的不等式,是解答本題的關鍵8、A【解析】利用半徑之和與圓心距的關系可得正確的選項.【詳解】圓,即,圓心為(0,3),半徑為1,圓,即,圓心為(4,0),半徑為3..所以兩圓相離,故選:A.9、B【解析】根據(jù)點,先表示出該點和原點之間的距離,再根據(jù)三角函數(shù)的定義列出等式,解方程可得答案.【詳解】因為角的終邊經過點,則,因為,所以,且,解得,故選:B10、B【解析】由題意,當在上時,;當在上時,圖()在,時圖象發(fā)生變化,由此可知,,根據(jù)勾股定理,可得,所以本題選擇B選項.二、填空題:本大題共6小題,每小題5分,共30分。11、##-0.4【解析】根據(jù)函數(shù)的周期性及可得的值,進而利用周期性即可求解的值.【詳解】解:因為是定義在上且周期為2的函數(shù),在區(qū)間上,所以,,又,即,解得,所以,故答案為:.12、4【解析】設扇形半徑為,弧長為,則,解得考點:角的概念,弧度的概念13、【解析】由,可知.所以函數(shù)是周期為4的周期函數(shù).,時,..對任意實數(shù),有,可知函數(shù)關于點(1,0)中心對稱,所以,又.所以.綜上可知,時,.故答案為.點睛:抽象函數(shù)的周期性:(1)若,則函數(shù)周期為T;(2)若,則函數(shù)周期為(3)若,則函數(shù)的周期為;(4)若,則函數(shù)的周期為.14、【解析】,即定義域為點睛:常見基本初等函數(shù)定義域的基本要求(1)分式函數(shù)中分母不等于零(2)偶次根式函數(shù)的被開方式大于或等于0.(3)一次函數(shù)、二次函數(shù)的定義域均為R.(4)y=x0的定義域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定義域均為R.(6)y=logax(a>0且a≠1)的定義域為(0,+∞)15、2【解析】令,證得為奇函數(shù),從而可得在的最大值和最小值之和為0,進而可求出結果.【詳解】設,定義域為,則,所以,即,所以為奇函數(shù),所以在的最大值和最小值之和為0,令,則因為,所以函數(shù)的最大值為,最小值為,則,∴故答案為:2.16、②③【解析】設AC∩BD=O,由題意證明AC⊥PO,由已知可得AC⊥PA,與在同一平面內過一點有且只有一條直線與已知直線垂直矛盾說明①錯誤;由線面平行的判定和性質說明②正確;由線面垂直的判定和性質說明③正確;由勾股定理即可判斷,說明④錯誤【詳解】設AC∩BD=O,如圖,①若PB⊥AC,∵AC⊥BD,則AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,則AC⊥PA,在平面PAC內過P有兩條直線與AC垂直,與在同一平面內過一點有且只有一條直線與已知直線垂直矛盾,①錯誤;②∵CD∥AB,則CD∥平面PAB,∴平面PAB與平面PCD的交線與AB平行,②正確;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,則平面PBD⊥平面PAC,③正確;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD為直角三角形,④錯誤,故答案為:②③三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1).(2).(3).【解析】(1)由函數(shù)過點,代入函數(shù)即可得的值;(2)由可得的取值范圍;(3)由函數(shù)的大致圖象即可得的取值范圍.試題解析:(1),,,.(2),,.(3)當時,是減函數(shù),值域為.偶函數(shù),時,是增函數(shù),值域為,函數(shù)有兩個零點時,.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.本題中在結合函數(shù)圖象分析得基礎上還用到了方程根的分布的有關知識18、(1)(2)證明見解析【解析】(1)將問題轉化為求即可;(2)根據(jù)線面垂直證明線線垂直.【小問1詳解】在正方體ABCD-中,易知⊥平面ABD,∴.【小問2詳解】證明:在正方體中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴19、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(?UA)∪(?UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C?B,當C=?時,2m﹣1<m+1,當C≠?時,由C?B得,由此能求出m的取值范圍【詳解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}∴A∩B={x|1≤x<5},(CUA)∪(CUB)={x|x<1或x≥5}(Ⅱ)∵集合C={x|m+1<x<2m-1},B∩C=C,∴C?B,當C=?時,解得當C≠?時,由C?B得,解得:2<m≤3綜上所述:m的取值范圍是(-∞,3]【點睛】本題考查交集、補集、并集的求法,考查實數(shù)的取值范圍的求法,考查交集、補集、并集集等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題20、(1)(2)【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牙齒發(fā)黑的臨床護理
- 關于進一步營造園區(qū)親商環(huán)境的對策建議
- 妊娠合并卵巢腫瘤的健康宣教
- 懸雍垂過長的健康宣教
- 不動桿菌細菌感染的臨床護理
- JJF(陜) 040-2020 水泥比長儀校準規(guī)范
- 《操作系統(tǒng)用戶界面》課件
- 小班身體協(xié)調能力的培養(yǎng)計劃
- 提升班級文藝素養(yǎng)的活動規(guī)劃計劃
- 2024-2025學年年七年級數(shù)學人教版下冊專題整合復習卷28.2 解直角三角形(一)同步測控優(yōu)化訓練(含答案)
- QCT457-2023救護車技術規(guī)范
- 廣東省深圳市南山區(qū)2023-2024學年四年級上學期期末數(shù)學試卷
- 醫(yī)院培訓課件:《分級護理制度》
- 2023-2024學年福建省廈門市湖里區(qū)八年級(上)期末數(shù)學試卷
- 企業(yè)經營管理分析案例
- 心內科小講課
- 新課標背景下的大單元教學研究:國內外大單元教學發(fā)展與演進綜述
- 2024年512全國防災減災日應知應會知識競賽題庫(含答案)
- 2024風電場智慧運維技術方案
- MOOC 模擬電子技術-中南大學 中國大學慕課答案
- (正式版)HGT 4339-2024 機械設備用涂料
評論
0/150
提交評論