版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆商丘市重點中學高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)O為正方形ABCD的中心,在O,A,B,C,D中任取3點,則取到的3點共線的概率為()A. B.C. D.2.已知點F是雙曲線的左焦點,點E是該雙曲線的右頂點,過F作垂直于x軸的直線與雙曲線交于G、H兩點,若是銳角三角形,則該雙曲線的離心率e的取值范圍是()A. B.C. D.3.函數(shù)在其定義域內(nèi)可導,的圖象如圖所示,則導函數(shù)的圖象為A. B.C. D.4.在下列四條拋物線中,焦點到準線的距離為1的是()A. B.C. D.5.頂點在原點,關(guān)于軸對稱,并且經(jīng)過點的拋物線方程為()A. B.C. D.6.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離7.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個數(shù)為()①②③A.0 B.1C.2 D.38.已知f(x)為R上的可導函數(shù),其導函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)9.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.510.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.11.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.12.設(shè)雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.如圖,在直三棱柱中,,為中點,則平面與平面夾角的正切值為___________.15.已知、是空間內(nèi)兩個單位向量,且,如果空間向量滿足,且,,則對于任意的實數(shù)、,的最小值為______16.若滿足約束條件,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前項和記為,已知.(1)求的通項公式:(2)求,并求為何值時的值最大.18.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值19.(12分)如圖,在三棱柱中,點在底面內(nèi)的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小20.(12分)已知拋物線的焦點為F,以F和準線上的兩點為頂點的三角形是邊長為的等邊三角形,過的直線交拋物線E于A,B兩點(1)求拋物線E的方程;(2)是否存在常數(shù),使得,如果存在,求的值,如果不存在,請說明理由;(3)證明:內(nèi)切圓的面積小于21.(12分)在等差數(shù)列中,記為數(shù)列的前項和,已知:.(1)求數(shù)列的通項公式;(2)求使成立的的值.22.(10分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】列出從5個點選3個點的所有情況,再列出3點共線的情況,用古典概型的概率計算公式運算即可.【詳解】如圖,從5個點中任取3個有共種不同取法,3點共線只有與共2種情況,由古典概型的概率計算公式知,取到3點共線的概率為.故選:A【點晴】本題主要考查古典概型的概率計算問題,采用列舉法,考查學生數(shù)學運算能力,是一道容易題.2、B【解析】根據(jù)是等腰三角形且為銳角三角形,得到,即,解得離心率范圍.【詳解】,當時,,,不妨取,,是等腰三角形且為銳角三角形,則,即,,即,,解得,故.故選:B.3、D【解析】分析:根據(jù)函數(shù)單調(diào)性、極值與導數(shù)的關(guān)系即可得到結(jié)論.詳解:觀察函數(shù)圖象,從左到右單調(diào)性先單調(diào)遞增,然后單調(diào)遞減,最后單調(diào)遞增.對應(yīng)的導數(shù)符號為正,負,正.,選項D的圖象正確.故選D.點睛:本題主要考查函數(shù)圖象的識別和判斷,函數(shù)單調(diào)性與導數(shù)符號的對應(yīng)關(guān)系是解題關(guān)鍵.4、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D5、C【解析】根據(jù)題意,設(shè)拋物線的方程為,進而待定系數(shù)求解即可.【詳解】解:由題,設(shè)拋物線的方程為,因為在拋物線上,所以,解得,即所求拋物線方程為故選:C6、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標為,半徑,由得圓心坐標為,半徑,∴,,∴,即兩圓相交.故選:B.7、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C8、D【解析】通過構(gòu)造函數(shù)法,結(jié)合導數(shù)確定正確答案.【詳解】構(gòu)造函數(shù),所以在上遞增,所以,即.故選:D9、D【解析】利用兩點間的距離公式,將切線長的和轉(zhuǎn)化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設(shè)點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎(chǔ)題.10、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.11、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.12、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:15、【解析】根據(jù)已知可設(shè),,,根據(jù)已知條件求出、、的值,將向量用坐標加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因為、是空間內(nèi)兩個單位向量,且,所以,,因為,則,不妨設(shè),,設(shè),則,,解得,則,因為,可得,則,所以,,當且僅當時,即當時,等號成立,因此,對于任意的實數(shù)、,的最小值為.故答案為:.16、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當直線過點時取得最小值5故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當或時,的值最大.【解析】(1)根據(jù)等差數(shù)列前項和公式,結(jié)合等差數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的性質(zhì)進行求解即可.【小問1詳解】設(shè)等差數(shù)列的公差為,因為,所以有,即;【小問2詳解】由(1)可知,所以該數(shù)列是遞減數(shù)列,而,當時,解得:,因此當或時,的值最大.18、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標系,確定相關(guān)點坐標,進而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.19、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內(nèi)的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設(shè),由得,,即.則.設(shè)平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一個法向量為記二面角的平面角為,由圖知,為銳角.所以,即.所以二面角的大小為.20、(1);(2)存在,1;(3)證明見解析.【解析】(1)根據(jù)幾何關(guān)系即可求p;(2)求解為定值1,即可求λ=1;(3)先求的面積,再由(為三角周長)可求內(nèi)切圓半徑r.【小問1詳解】由題意焦點到準線的距離等于該正三角形一條邊上的高線,因此,∴拋物線E的方程為【小問2詳解】設(shè)直線的斜率為,直線方程為,記,,消去,得由,得且,,,,因此,即存在實數(shù)滿足要求【小問3詳解】由(2)知,,點F到直線AB的距離,∴的面積記的內(nèi)切圓半徑為r,∵,∴∴內(nèi)切圓的面積小于21、(1);(2)或.【解析】(1)根據(jù)給定條件求出數(shù)列的公差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西省呂梁地區(qū)2025屆物理高二上期末質(zhì)量跟蹤監(jiān)視試題含解析
- 惠州市重點中學2025屆高三上物理期中考試試題含解析
- 2025屆云南省玉溪市峨山縣三中物理高二第一學期期末質(zhì)量檢測模擬試題含解析
- 山西省晉中市平遙縣平遙二中2025屆物理高三第一學期期中復(fù)習檢測模擬試題含解析
- 2025屆廣西柳州市柳江中學物理高一上期中經(jīng)典模擬試題含解析
- 乳母飲食回避對母乳營養(yǎng)成分及嬰兒生長發(fā)育的影響
- 2024房屋裝修標準版合同
- 2024不能簽的勞動合同
- 急救藥物選用心得護理課件
- 小學一年級描寫秋天的寫話200字
- 2023年湖北武漢中考語文真題及答案
- 出國簽證戶口本翻譯模板
- 燒傷病患者的護理-燒傷病人的護理
- 對話理論與閱讀教學
- 第三單元(知識清單)- 高二語文選擇性必修下冊同步備課系列(統(tǒng)編版)
- 機加工安全事故案例演示文稿
- 凱文杜蘭特-英語介紹
- 剖宮產(chǎn)術(shù)后再次妊娠陰道分娩管理的專家共識
- 最全的俄語教學課件
- 改進維持性血液透析患者貧血狀況PDCA
- 再生資源回收利用體系建設(shè)項目方案
評論
0/150
提交評論