版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
貴州省北京師范大學貴陽附中2025屆數(shù)學高二上期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛(wèi)星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.22.拋物線的準線方程是()A. B.C. D.3.已知正三棱柱的側棱長與底面邊長相等,則AB1與側面ACC1A1所成角的正弦值等于A. B.C. D.4.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.5.下列命題是真命題的個數(shù)為()①不等式的解集為②不等式的解集為R③設,則④命題“若,則或”為真命題A1 B.2C.3 D.46.下列有關命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題7.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要8.下列說法中正確的是()A.存在只有4個面的棱柱 B.棱柱的側面都是四邊形C.正三棱錐的所有棱長都相等 D.所有幾何體的表面都能展開成平面圖形9.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.10.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數(shù)多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交11.已知數(shù)列滿足:,數(shù)列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.12.下列推理中屬于歸納推理且結論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項和B.由滿足對都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對一切,二、填空題:本題共4小題,每小題5分,共20分。13.已知,動點滿足,則點的軌跡方程為___________.14.已知數(shù)列滿足:,,則______15.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結論正確的是__________16.某校學生在研究折紙實驗中發(fā)現(xiàn),當對折后紙張達到一定的厚度時,便不能繼續(xù)對折了.在理想情況下,對折次數(shù)與紙的長邊和厚度有關系:.現(xiàn)有一張長邊為30cm,厚度為0.05cm的矩形紙,根據(jù)以上信息,當對折完4次時,的最小值為________;該矩形紙最多能對折________次.(參考數(shù)值:,)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的首項,前n項和為,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)設,求數(shù)列的前n項和.18.(12分)已知函數(shù).(1)當時,求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.19.(12分)已知直線,,分別求實數(shù)的值,使得:(1);(2);(3)與相交.20.(12分)已知函數(shù),其中(1)討論的單調(diào)性;(2)若不等式對一切恒成立,求實數(shù)k的最大值21.(12分)橢圓C:的左右焦點分別為,,P為橢圓C上一點.(1)當P為橢圓C的上頂點時,求的余弦值;(2)直線與橢圓C交于A,B,若,求k22.(10分)已知拋物線的焦點與雙曲線的右焦點重合,雙曲線E的漸近線方程為(1)求拋物線C的標準方程和雙曲線E的標準方程;(2)若O是坐標原點,直線與拋物線C交于A,B兩點,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B2、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.3、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結構特征.由于題目所給幾何體為直三棱柱,故側棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.4、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設,則,又設,則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃5、B【解析】舉反例判斷A,解一元二次不等式確定B,由導數(shù)的運算法則求導判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯;,B正確;,,C錯;命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個數(shù)2.故選:B6、C【解析】對于選項A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.7、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當時,與平行,當時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B8、B【解析】對于A、B:由棱柱的定義直接判斷;對于C:由正三棱錐的側棱長和底面邊長不一定相等,即可判斷;對于D:由球的表面不能展開成平面圖形即可判斷【詳解】對于A:棱柱最少有5個面,則A錯誤;對于B:棱柱的所有側面都是平行四邊形,則B正確;對于C:正三棱錐的側棱長和底面邊長不一定相等,則C錯誤;對于D:球的表面不能展開成平面圖形,則D錯誤故選:B9、D【解析】根據(jù)給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D10、D【解析】設直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.11、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D12、A【解析】根據(jù)歸納推理是由特殊到一般,推導結論可得結果.【詳解】對于A,由,求出,,,…,推斷:數(shù)列的前項和,是由特殊推導出一般性的結論,且,故A正確;B和C屬于演繹推理,故不正確;對于D,屬于歸納推理,但時,結論不正確,故D不正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.14、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因為,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:15、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉化為關于的二次函數(shù)結合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進而可得正確答案.【詳解】對于(1):因為,均為正數(shù),且,則有,當且僅當時等號成立,即的最大值為,故(1)正確;對于(2):因為,當且僅當時等號成立,即的最小值為,故(2)正確;對于(3):因為,所以,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當且僅當時等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).16、①.64②.6【解析】利用即可求解,利用和換底公式進行求解.【詳解】令,則,則,即,即當對折完4次時,最小值為;由題意,得,,則,所以該矩形紙最多能對折6次.故答案為:64,6.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)當時,由,得,兩式相減化簡可得,再對等式兩邊同時減去1,化簡可證得結論,(2)由(1)得,然后利用分組求和可求出【小問1詳解】由已知得,.當時,.兩式相減得,.于是,即,又,,,所以滿足上式,所以對都成立,故數(shù)列是等比數(shù)列.【小問2詳解】由(1)得,,.18、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進行求導、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進行求解即可;(2)對進行常變量分離,然后構造新函數(shù),對新函數(shù)進行求導,判斷其單調(diào)性,進而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域為,當時,.由,得.當變化時,,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當時,,單調(diào)遞增;當時,,單調(diào)遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構造函數(shù)法、常變量分離法,考查了數(shù)學運算能力和分類討論思想.19、(1)或(2)或(3)且【解析】(1)根據(jù)直線一般式平行的條件列式計算;(2)根據(jù)直線一般式垂直的條件列式計算;(3)根據(jù)相交和平行的關系可得答案.【小問1詳解】,,解得或又時,直線,,兩直線不重合;時,直線,,兩直線不重合;故或;【小問2詳解】,,解得或;【小問3詳解】與相交故由(1)得且.20、(1)答案見解析(2)【解析】(1)先對函數(shù)求導,然后分和討論導數(shù)的正負,從而可求出函數(shù)的單調(diào)區(qū)間,(2)由題意得恒成立,構造函數(shù),利用導數(shù)求出其最小值即可【小問1詳解】由,得當時,恒成立,∴在上單調(diào)遞增當時,令,得,得,∴在上單調(diào)遞增,在上單調(diào)遞減綜上所述:當時,在上單調(diào)遞增;當時,在上單調(diào)遞增,在上單調(diào)遞減【小問2詳解】依題意得對一切恒成立,即令,則令,則在上單調(diào)遞增,而當時,,即;當時,,即∴在上單調(diào)遞減,在上單調(diào)遞增∴∴,即k的最大值為21、(1)(2)【解析】(1)利用余弦定理可求頂角的余弦值.(2)聯(lián)立直線方程和橢圓方程,消元后利用韋達定理結合弦長公式可求的值.【小問1詳解】當為橢圓的上頂點時,,在中,由余弦定理知.【小問2詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西農(nóng)業(yè)職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年度醫(yī)療機構消毒供應中心運營承包合同書4篇
- 農(nóng)業(yè)物聯(lián)網(wǎng)發(fā)展-深度研究
- 二零二五版借款合同違約責任及法律救濟途徑3篇
- 二零二五年度瓷磚圖案設計與加工合同4篇
- 2025年度跨境電商平臺代理房屋買賣合同4篇
- 2025年充電樁充電設備生產(chǎn)許可證申請與辦理合同3篇
- 2025年山東鋁業(yè)職業(yè)學院高職單招職業(yè)適應性測試近5年常考版參考題庫含答案解析
- 二零二五年度石油行業(yè)安全培訓合同集錦4篇
- 二零二四年度億嘉鋼管生產(chǎn)基地土地租賃續(xù)約合同3篇
- 機電安裝工程安全管理
- 2024年上海市第二十七屆初中物理競賽初賽試題及答案
- 信息技術部年終述職報告總結
- 高考滿分作文常見結構完全解讀
- 理光投影機pj k360功能介紹
- 六年級數(shù)學上冊100道口算題(全冊完整版)
- 八年級數(shù)學下冊《第十九章 一次函數(shù)》單元檢測卷帶答案-人教版
- 帕薩特B5維修手冊及帕薩特B5全車電路圖
- 小學五年級解方程應用題6
- 年月江西省南昌市某綜合樓工程造價指標及
- 作物栽培學課件棉花
評論
0/150
提交評論