![天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷含解析_第1頁](http://file4.renrendoc.com/view7/M00/27/0B/wKhkGWcR89KAJz5dAAIpxHCr4C4794.jpg)
![天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷含解析_第2頁](http://file4.renrendoc.com/view7/M00/27/0B/wKhkGWcR89KAJz5dAAIpxHCr4C47942.jpg)
![天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷含解析_第3頁](http://file4.renrendoc.com/view7/M00/27/0B/wKhkGWcR89KAJz5dAAIpxHCr4C47943.jpg)
![天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷含解析_第4頁](http://file4.renrendoc.com/view7/M00/27/0B/wKhkGWcR89KAJz5dAAIpxHCr4C47944.jpg)
![天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷含解析_第5頁](http://file4.renrendoc.com/view7/M00/27/0B/wKhkGWcR89KAJz5dAAIpxHCr4C47945.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天津市漢沽區(qū)名校2024年中考數(shù)學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.tan45o的值為()A. B.1 C. D.2.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°3.的值是()A.1 B.﹣1 C.3 D.﹣34.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學記數(shù)法可表示為()A. B. C. D.5.在“朗讀者”節(jié)目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生讀書情況,隨機調(diào)查了八年級50名學生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:冊數(shù)01234人數(shù)41216171關于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是26.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側,若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°7.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1068.如圖,在中,,,,則等于()A. B. C. D.9.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.10.計算的結果是().A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一個正六邊形的邊心距為,則它的半徑為______.12.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°13.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.14.如果a,b分別是2016的兩個平方根,那么a+b﹣ab=___.15.已知等腰三角形的一邊等于5,另一邊等于6,則它的周長等于_______.16.若式子有意義,則x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?18.(8分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負整數(shù)解.19.(8分)如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx-k的圖象的交點坐標為A(m,2).(1)求m的值和一次函數(shù)的解析式;(2)設一次函數(shù)y=kx-k的圖象與y軸交于點B,求△AOB的面積;(3)直接寫出使函數(shù)y=kx-k的值大于函數(shù)y=x的值的自變量x的取值范圍.20.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點D在上,點E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長;②當為何值時,AB?AC的值最大?21.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN22.(10分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數(shù)達2678個,志愿者人數(shù)達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調(diào)查小組根據(jù)平臺數(shù)據(jù)進行了抽樣問卷調(diào)查,過程如下:(1)收集、整理數(shù)據(jù):從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請你補充其中的數(shù)據(jù):志愿服務時間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請將空缺的部分補充完整;(3)分析數(shù)據(jù):①調(diào)查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據(jù)上述信息估計九年級200名團員中參加此次義務勞動的人數(shù)約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.23.(12分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數(shù)點后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.解不等式組并寫出它的所有整數(shù)解.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.2、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.3、B【解析】
直接利用立方根的定義化簡得出答案.【詳解】因為(-1)3=-1,=﹣1.故選:B.【點睛】此題主要考查了立方根,正確把握立方根的定義是解題關鍵.,4、C【解析】試題分析:大于0而小于1的數(shù)用科學計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學計數(shù)法計數(shù)5、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點:1.方差;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).6、A【解析】
根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.7、C【解析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).8、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點睛:本題主要考查銳角三角函數(shù)的定義,解題的關鍵是掌握勾股定理及正弦函數(shù)的定義.9、B【解析】
本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點睛】掌握分類討論的方法是本題解題的關鍵.10、D【解析】
根據(jù)同底數(shù)冪的乘除法運算進行計算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點睛】本題主要考查同底數(shù)冪的乘除運算,解題的關鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】試題分析:設正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關系.解題的關鍵在于利用正多邊形的半徑、邊心距構造直角三角形并利用解直角三角形的知識求解.12、B【解析】
根據(jù)平行線的性質(zhì)即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點睛】考查平行線的性質(zhì),解題的關鍵是熟練掌握平行線的性質(zhì),屬于中考基礎題.13、1或1﹣2【解析】
當點P在AF上時,由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當點P在BE上時,由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應用,根據(jù)題意畫出符合題意的圖形是解題的關鍵.14、1【解析】
先由平方根的應用得出a,b的值,進而得出a+b=0,代入即可得出結論.【詳解】∵a,b分別是1的兩個平方根,∴∵a,b分別是1的兩個平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案為:1.【點睛】此題主要考查了平方根的性質(zhì)和意義,解本題的關鍵是熟練掌握平方根的性質(zhì).15、16或1【解析】
題目給出等腰三角形有兩條邊長為5和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】(1)當三角形的三邊是5,5,6時,則周長是16;(2)當三角形的三邊是5,6,6時,則三角形的周長是1;故它的周長是16或1.
故答案為:16或1.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.16、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.三、解答題(共8題,共72分)17、(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.【解析】試題分析:(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個數(shù);(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.試題解析:(1)嘉嘉隨機抽取一張卡片共出現(xiàn)4種等可能結果,其中抽到的卡片上的數(shù)是勾股數(shù)的結果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.18、-【解析】【分析】先根據(jù)分式的運算法則進行化簡,然后再求出不等式的非負整數(shù)解,最后把符合條件的x的值代入化簡后的結果進行計算即可.【詳解】原式=,=,=,∵﹣(x﹣1)≥,∴x﹣1≤﹣1,∴x≤0,非負整數(shù)解為0,∴x=0,當x=0時,原式=-.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練掌握分式的運算法則.19、(1)y=1x﹣1(1)1(3)x>1【解析】試題分析:(1)先把A(m,1)代入正比例函數(shù)解析式可計算出m=1,然后把A(1,1)代入y=kx﹣k計算出k的值,從而得到一次函數(shù)解析式為y=1x﹣1;(1)先確定B點坐標,然后根據(jù)三角形面積公式計算;(3)觀察函數(shù)圖象得到當x>1時,直線y=kx﹣k都在y=x的上方,即函數(shù)y=kx﹣k的值大于函數(shù)y=x的值.試題解析:(1)把A(m,1)代入y=x得m=1,則點A的坐標為(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函數(shù)解析式為y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,則B點坐標為(0,﹣1),所以S△AOB=×1×1=1;(3)自變量x的取值范圍是x>1.考點:兩條直線相交或平行問題20、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點C為圓心,CE長為半徑作⊙C,與BC交于點F,于BC延長線交于點G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當d=,即OM=時,AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時.點睛:本題主要考查圓的綜合問題,解題的關鍵是掌握圓的有關性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識點.21、詳見解析.【解析】
只要證明∠EAM=∠ECN,根據(jù)同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教部編版道德與法治八年級下冊:2.1 《堅持依憲治國》聽課評課記錄1
- 衛(wèi)生醫(yī)療年度個人總結
- 新員工工作計劃書
- 高三年級期末總結
- 小學三年級語文教材教學計劃
- 濟南城市房屋租賃合同
- 口腔執(zhí)業(yè)醫(yī)師聘用合同范本
- 押運員聘用合同范本
- 魯教版地理七年級下冊5.2《北方地區(qū)和南方地區(qū)》聽課評課記錄
- 預制樓梯灌漿料 施工方案
- 2-3-分子生物學與基因工程
- 2024年全國統(tǒng)一考試高考新課標Ⅱ卷語文+數(shù)學+英語試題(真題+答案)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項目可行性研究報告編制標準
- 2024年全國甲卷高考化學真題試題(原卷版+含解析)
- 焦煤集團5MW10MWh儲能技術方案
- JT-T-617.7-2018危險貨物道路運輸規(guī)則第7部分:運輸條件及作業(yè)要求
- 樹木吊裝施工專項施工方案
- 小學一年級拼音天天練
- 醫(yī)院病房用電安全宣教
- 屋頂分布式光伏電站施工組織設計
- 《膽囊超聲診斷》課件
評論
0/150
提交評論