天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第1頁
天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第2頁
天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第3頁
天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第4頁
天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市漢沽區(qū)名校2024年中考數(shù)學(xué)全真模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.tan45o的值為()A. B.1 C. D.2.如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°3.的值是()A.1 B.﹣1 C.3 D.﹣34.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對(duì)人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學(xué)記數(shù)法可表示為()A. B. C. D.5.在“朗讀者”節(jié)目的影響下,某中學(xué)開展了“好書伴我成長(zhǎng)”讀書活動(dòng).為了解5月份八年級(jí)300名學(xué)生讀書情況,隨機(jī)調(diào)查了八年級(jí)50名學(xué)生讀書的冊(cè)數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:冊(cè)數(shù)01234人數(shù)41216171關(guān)于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是26.如圖,在△ABC中,AC=BC,點(diǎn)D在BC的延長(zhǎng)線上,AE∥BD,點(diǎn)ED在AC同側(cè),若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°7.據(jù)媒體報(bào)道,我國(guó)最新研制的“察打一體”無人機(jī)的速度極快,經(jīng)測(cè)試最高速度可達(dá)204000米/分,這個(gè)數(shù)用科學(xué)記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1068.如圖,在中,,,,則等于()A. B. C. D.9.一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球則兩次摸到的球的顏色不同的概率為()A. B. C. D.10.計(jì)算的結(jié)果是().A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知一個(gè)正六邊形的邊心距為,則它的半徑為______.12.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°13.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動(dòng)點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為P,則線段AP的長(zhǎng)為______.14.如果a,b分別是2016的兩個(gè)平方根,那么a+b﹣ab=___.15.已知等腰三角形的一邊等于5,另一邊等于6,則它的周長(zhǎng)等于_______.16.若式子有意義,則x的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?18.(8分)先化簡(jiǎn),再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負(fù)整數(shù)解.19.(8分)如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)坐標(biāo)為A(m,2).(1)求m的值和一次函數(shù)的解析式;(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,求△AOB的面積;(3)直接寫出使函數(shù)y=kx-k的值大于函數(shù)y=x的值的自變量x的取值范圍.20.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,點(diǎn)D在上,點(diǎn)E在弦AB上(E不與A重合),且四邊形BDCE為菱形.(1)求證:AC=CE;(2)求證:BC2﹣AC2=AB?AC;(1)已知⊙O的半徑為1.①若=,求BC的長(zhǎng);②當(dāng)為何值時(shí),AB?AC的值最大?21.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN22.(10分)太原市志愿者服務(wù)平臺(tái)旨在弘揚(yáng)“奉獻(xiàn)、關(guān)愛、互助、進(jìn)步”的志愿服務(wù)精神,培育志思服務(wù)文化,推動(dòng)太原市志愿服務(wù)的制度化、常態(tài)化,弘揚(yáng)社會(huì)正能量,截止到2018年5月9日16:00,在該平臺(tái)注冊(cè)的志愿組織數(shù)達(dá)2678個(gè),志愿者人數(shù)達(dá)247951人,組織志愿活動(dòng)19748次,累計(jì)志愿服務(wù)時(shí)間3889241小時(shí),學(xué)校為了解共青團(tuán)員志愿服務(wù)情況,調(diào)查小組根據(jù)平臺(tái)數(shù)據(jù)進(jìn)行了抽樣問卷調(diào)查,過程如下:(1)收集、整理數(shù)據(jù):從九年級(jí)隨機(jī)抽取40名共青團(tuán)員,將其志愿服務(wù)時(shí)間按如下方式分組(A:0~5小時(shí);B:5~10小時(shí);C:10~15小時(shí);D:15~20小時(shí);E:20~25小時(shí);F:25~30小時(shí),注:每組含最小值,不含最大值)得到這40名志愿者服務(wù)時(shí)間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請(qǐng)你補(bǔ)充其中的數(shù)據(jù):志愿服務(wù)時(shí)間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請(qǐng)將空缺的部分補(bǔ)充完整;(3)分析數(shù)據(jù):①調(diào)查小組從八年級(jí)共青團(tuán)員中隨機(jī)抽取40名,將他們的志愿服務(wù)時(shí)間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計(jì)圖.請(qǐng)你對(duì)比八九年級(jí)的統(tǒng)計(jì)圖,寫出一個(gè)結(jié)論;②校團(tuán)委計(jì)劃組織志愿服務(wù)時(shí)間不足10小時(shí)的團(tuán)員參加義務(wù)勞動(dòng),根據(jù)上述信息估計(jì)九年級(jí)200名團(tuán)員中參加此次義務(wù)勞動(dòng)的人數(shù)約為人;(4)問題解決:校團(tuán)委計(jì)劃組織中考志愿服務(wù)活動(dòng),共甲、乙、丙三個(gè)服務(wù)點(diǎn),八年級(jí)的小穎和小文任意選擇一個(gè)服務(wù)點(diǎn)參與志服務(wù),求兩人恰好選在同一個(gè)服務(wù)點(diǎn)的概率.23.(12分)如圖1所示是一輛直臂高空升降車正在進(jìn)行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)A離地面BD的高度AH為2m.當(dāng)起重臂AC長(zhǎng)度為8m,張角∠HAC為118°時(shí),求操作平臺(tái)C離地面的高度.(果保留小數(shù)點(diǎn)后一位,參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.解不等式組并寫出它的所有整數(shù)解.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值.2、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.3、B【解析】

直接利用立方根的定義化簡(jiǎn)得出答案.【詳解】因?yàn)椋?1)3=-1,=﹣1.故選:B.【點(diǎn)睛】此題主要考查了立方根,正確把握立方根的定義是解題關(guān)鍵.,4、C【解析】試題分析:大于0而小于1的數(shù)用科學(xué)計(jì)數(shù)法表示,10的指數(shù)是負(fù)整數(shù),其絕對(duì)值等于第一個(gè)不是0的數(shù)字前所有0的個(gè)數(shù).考點(diǎn):用科學(xué)計(jì)數(shù)法計(jì)數(shù)5、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點(diǎn):1.方差;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).6、A【解析】

根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),關(guān)鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.7、C【解析】試題分析:204000米/分,這個(gè)數(shù)用科學(xué)記數(shù)法表示2.04×105,故選C.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).8、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點(diǎn)睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.9、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計(jì)算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.10、D【解析】

根據(jù)同底數(shù)冪的乘除法運(yùn)算進(jìn)行計(jì)算.【詳解】3x2y2x3y2÷xy3=6x5y4÷xy3=6x4y.故答案選D.【點(diǎn)睛】本題主要考查同底數(shù)冪的乘除運(yùn)算,解題的關(guān)鍵是知道:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】試題分析:設(shè)正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點(diǎn)睛:本題主要考查正多邊形和圓的關(guān)系.解題的關(guān)鍵在于利用正多邊形的半徑、邊心距構(gòu)造直角三角形并利用解直角三角形的知識(shí)求解.12、B【解析】

根據(jù)平行線的性質(zhì)即可解決問題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點(diǎn)睛】考查平行線的性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì),屬于中考基礎(chǔ)題.13、1或1﹣2【解析】

當(dāng)點(diǎn)P在AF上時(shí),由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對(duì)角線AF的長(zhǎng),從而可得到PA的長(zhǎng);當(dāng)點(diǎn)P在BE上時(shí),由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長(zhǎng)為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點(diǎn)睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.14、1【解析】

先由平方根的應(yīng)用得出a,b的值,進(jìn)而得出a+b=0,代入即可得出結(jié)論.【詳解】∵a,b分別是1的兩個(gè)平方根,∴∵a,b分別是1的兩個(gè)平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案為:1.【點(diǎn)睛】此題主要考查了平方根的性質(zhì)和意義,解本題的關(guān)鍵是熟練掌握平方根的性質(zhì).15、16或1【解析】

題目給出等腰三角形有兩條邊長(zhǎng)為5和6,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【詳解】(1)當(dāng)三角形的三邊是5,5,6時(shí),則周長(zhǎng)是16;(2)當(dāng)三角形的三邊是5,6,6時(shí),則三角形的周長(zhǎng)是1;故它的周長(zhǎng)是16或1.

故答案為:16或1.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.16、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.三、解答題(共8題,共72分)17、(1);(2)淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.【解析】試題分析:(1)根據(jù)等可能事件的概率的定義,分別確定總的可能性和是勾股數(shù)的情況的個(gè)數(shù);(2)用列表法列舉出所有的情況和兩張卡片上的數(shù)都是勾股數(shù)的情況即可.試題解析:(1)嘉嘉隨機(jī)抽取一張卡片共出現(xiàn)4種等可能結(jié)果,其中抽到的卡片上的數(shù)是勾股數(shù)的結(jié)果有3種,所以嘉嘉抽取一張卡片上的數(shù)是勾股數(shù)的概率P1=;(2)列表法:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表可知,兩次抽取卡片的所有可能出現(xiàn)的結(jié)果有12種,其中抽到的兩張卡片上的數(shù)都是勾股數(shù)的有6種,∴P2=,∵P1=,P2=,P1≠P2∴淇淇與嘉嘉抽到勾股數(shù)的可能性不一樣.18、-【解析】【分析】先根據(jù)分式的運(yùn)算法則進(jìn)行化簡(jiǎn),然后再求出不等式的非負(fù)整數(shù)解,最后把符合條件的x的值代入化簡(jiǎn)后的結(jié)果進(jìn)行計(jì)算即可.【詳解】原式=,=,=,∵﹣(x﹣1)≥,∴x﹣1≤﹣1,∴x≤0,非負(fù)整數(shù)解為0,∴x=0,當(dāng)x=0時(shí),原式=-.【點(diǎn)睛】本題考查了分式的化簡(jiǎn)求值,解題的關(guān)鍵是熟練掌握分式的運(yùn)算法則.19、(1)y=1x﹣1(1)1(3)x>1【解析】試題分析:(1)先把A(m,1)代入正比例函數(shù)解析式可計(jì)算出m=1,然后把A(1,1)代入y=kx﹣k計(jì)算出k的值,從而得到一次函數(shù)解析式為y=1x﹣1;(1)先確定B點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)x>1時(shí),直線y=kx﹣k都在y=x的上方,即函數(shù)y=kx﹣k的值大于函數(shù)y=x的值.試題解析:(1)把A(m,1)代入y=x得m=1,則點(diǎn)A的坐標(biāo)為(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函數(shù)解析式為y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,則B點(diǎn)坐標(biāo)為(0,﹣1),所以S△AOB=×1×1=1;(3)自變量x的取值范圍是x>1.考點(diǎn):兩條直線相交或平行問題20、(1)證明見解析;(2)證明見解析;(1)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,據(jù)此得證;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG=AC=CE=CD,證△BEF∽△BGA得,即BF?BG=BE?AB,將BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)①設(shè)AB=5k、AC=1k,由BC2-AC2=AB?AC知BC=2k,連接ED交BC于點(diǎn)M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②設(shè)OM=d,則MD=1-d,MC2=OC2-OM2=9-d2,繼而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB?AC=BC2-AC2,據(jù)此得出關(guān)于d的二次函數(shù),利用二次函數(shù)的性質(zhì)可得答案.詳解:(1)∵四邊形EBDC為菱形,∴∠D=∠BEC,∵四邊形ABDC是圓的內(nèi)接四邊形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以點(diǎn)C為圓心,CE長(zhǎng)為半徑作⊙C,與BC交于點(diǎn)F,于BC延長(zhǎng)線交于點(diǎn)G,則CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四邊形AEFG是⊙C的內(nèi)接四邊形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF?BG=BE?AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB?AC,即BC2﹣AC2=AB?AC;(1)設(shè)AB=5k、AC=1k,∵BC2﹣AC2=AB?AC,∴BC=2k,連接ED交BC于點(diǎn)M,∵四邊形BDCE是菱形,∴DE垂直平分BC,則點(diǎn)E、O、M、D共線,在Rt△DMC中,DC=AC=1k,MC=BC=k,∴DM=,∴OM=OD﹣DM=1﹣k,在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,解得:k=或k=0(舍),∴BC=2k=4;②設(shè)OM=d,則MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=16﹣4d2,AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,由(2)得AB?AC=BC2﹣AC2=﹣4d2+6d+18=﹣4(d﹣)2+,∴當(dāng)d=,即OM=時(shí),AB?AC最大,最大值為,∴DC2=,∴AC=DC=,∴AB=,此時(shí).點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、圓內(nèi)接四邊形的性質(zhì)及菱形的性質(zhì)、相似三角形的判定與性質(zhì)、二次函數(shù)的性質(zhì)等知識(shí)點(diǎn).21、詳見解析.【解析】

只要證明∠EAM=∠ECN,根據(jù)同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論