2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆北京市懷柔區(qū)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且斜率為的直線方程為()A. B.C D.2.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A. B.C D.3.已知方程表示雙曲線,則實數(shù)的取值范圍是()A.或 B.C. D.4.函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點()A.個 B.個C.個 D.個5.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.6.某地政府為落實疫情防控常態(tài)化,不定時從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進行編號,若018號被抽中,則下列編號也被抽中的是()A.076 B.122C.390 D.5227.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.8.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.9.在中,內(nèi)角所對的邊為,若,,,則()A. B.C. D.10.已知函數(shù)在處取得極值,則()A. B.C. D.11.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.12.某市要對兩千多名出租車司機的年齡進行調(diào)查,現(xiàn)從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲二、填空題:本題共4小題,每小題5分,共20分。13.在正項等比數(shù)列中,,,則的公比為___________.14.程大位《算法統(tǒng)宗》里有詩云“九百九十六斤棉,贈分八子做盤纏.次第每人多十七,要將第八數(shù)來言.務(wù)要分明依次弟,孝和休惹外人傳.”意為:996斤棉花,分別贈送給8個子女做旅費,從第一個開始,以后每人依次多17斤,直到第八個孩子為止.分配時一定要等級分明,使孝順子女的美德外傳,則第七個孩子分得斤數(shù)為___________.15.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標(biāo)是_____________16.在平面直角坐標(biāo)系中,雙曲線左、右焦點分別為,,點M是雙曲線右支上一點,,則雙曲線的漸近線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)四棱錐,底面為矩形,面,且,點在線段上,且面.(1)求線段的長;(2)對于(1)中的,求直線與面所成角的正弦值.18.(12分)如圖,正四棱錐底面的四個頂點在球的同一個大圓上,點在球面上,且正四棱錐的體積為.(1)該正四棱錐的表面積的大??;(2)二面角的大小.(結(jié)果用反三角表示)19.(12分)已知橢圓過點,且離心率(1)求橢圓的方程;(2)設(shè)點為橢圓的左焦點,點,過點作的垂線交橢圓于點,,連接與交于點①若,求;②求的值20.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.21.(12分)已知函數(shù)(m≥0).(1)當(dāng)m=0時,求曲線在點(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實數(shù)m的值.22.(10分)在中,,,的對邊分別是,,,已知.(1)求;(2)若,且的面積為4,求的周長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.2、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A3、A【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的性質(zhì),列出關(guān)于不等式,求解即可得到答案【詳解】由雙曲線的性質(zhì):,解的或,故選:A4、A【解析】利用極小值的定義判斷可得出結(jié)論.【詳解】由導(dǎo)函數(shù)在區(qū)間內(nèi)的圖象可知,函數(shù)在內(nèi)的圖象與軸有四個公共點,在從左到右第一個點處導(dǎo)數(shù)左正右負,在從左到右第二個點處導(dǎo)數(shù)左負右正,在從左到右第三個點處導(dǎo)數(shù)左正右正,在從左到右第四個點處導(dǎo)數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極小值點有個,故選:A.5、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B6、B【解析】根據(jù)系統(tǒng)抽樣的特點,寫出組數(shù)與對應(yīng)抽取編號的關(guān)系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設(shè)第組抽取的編號為,故可設(shè),又第一組抽中號,故可得,解得故,當(dāng)時,.故選:.7、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.8、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.9、B【解析】利用正弦定理角化邊得到,再利用余弦定理構(gòu)造方程求得結(jié)果.【詳解】,,由余弦定理得:,,.故選:B.10、B【解析】根據(jù)極值點處導(dǎo)函數(shù)為零可求解.【詳解】因為,則,由題意可知.經(jīng)檢驗滿足題意故選:B11、C【解析】依題意,直線與直線互相垂直,,,故選12、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設(shè)中位數(shù)為,則有,解得(歲),故選C【點睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:314、167【解析】由題設(shè)知8個孩子分得斤數(shù)是公差為17的等差數(shù)列,設(shè)第一個孩子分得斤,應(yīng)用等差數(shù)列前n項和公式求,進而由等差數(shù)列通項公式求即可.【詳解】由題意,設(shè)第一個孩子分得斤,則,所以,可得,故斤.故答案為:167.15、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標(biāo)【詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點坐標(biāo)為故答案為:16、【解析】首先根據(jù)已知條件得到,再結(jié)合雙曲線的幾何性質(zhì)求解即可.【詳解】如圖所示:,,所以,即.設(shè),則,.即,,,,所以,漸近線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1(2)【解析】(1)根據(jù)線面垂直得到,再由相似比得方程可求解;(2)建立空間直角坐標(biāo)系,求平面的法向量,運用夾角公式先求線面角的余弦值,再轉(zhuǎn)化為正弦值即可.小問1詳解】面,在矩形中,易得:;【小問2詳解】如四建立空間直角坐標(biāo)系:則,,由題意可知:為平面的一個法向量,,,直線與面所成角的正弦值為.18、(1)(2)【解析】(1)首先求出球的半徑,即可得到四棱錐的棱長,再根據(jù)錐體的表面積公式計算可得;(2)取中點,聯(lián)結(jié),即可得到,從而得到為二面角的平面角,再利用余弦定理計算可得.【小問1詳解】解:設(shè)球的半徑為,則解得,所以所有棱長均為,因此【小問2詳解】解:取中點,聯(lián)結(jié),因為均為正三角形,因此,即為二面角的平面角.,因此二面角的大小為.19、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標(biāo),從而可求出;②當(dāng)時,,當(dāng)時,直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系,結(jié)合中點坐標(biāo)公式可得中點的坐標(biāo),再將直線的方程與方程聯(lián)立,求出點的坐標(biāo),從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當(dāng)時,直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當(dāng)時,當(dāng)時,直線過點且與直線垂直,則直線方程為由得顯然設(shè),,則,則中點直線的方程為,由得所以綜上的值為20、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進行求解,最終求出結(jié)果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當(dāng)真且假時,且,得;②當(dāng)假且真時,且,得.所以,的取值范圍為.21、(1)(2)【解析】(1)求導(dǎo),利用導(dǎo)函數(shù)的幾何意義求解切線方程的斜率,進而求出切線方程;(2)對導(dǎo)函數(shù)再次求導(dǎo),判斷其單調(diào)性,結(jié)合隱零點求出其最小值,列出方程,求出實數(shù)m的值.【小問1詳解】當(dāng)時,因為,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因為,令,因為,所以在上單調(diào)遞增,當(dāng)實數(shù)時,,;當(dāng)實數(shù)時,,;當(dāng)實數(shù)時,,所以總存在一個,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論