版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣州市番禺區(qū)高三練習(xí)題五(全國(guó)卷)數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.2.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.3.?dāng)?shù)學(xué)中的數(shù)形結(jié)合,也可以組成世間萬(wàn)物的絢麗畫面.一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的結(jié)合產(chǎn)物,曲線恰好是四葉玫瑰線.給出下列結(jié)論:①曲線C經(jīng)過(guò)5個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到坐標(biāo)原點(diǎn)O的距離都不超過(guò)2;③曲線C圍成區(qū)域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結(jié)論的序號(hào)是()A.①③ B.②④ C.①②③ D.②③④4.復(fù)數(shù)()A. B. C.0 D.5.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.6.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要7.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于()A. B. C. D.8.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.9.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是A.α內(nèi)有無(wú)數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面10.設(shè)全集,集合,,則集合()A. B. C. D.11.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個(gè)數(shù)為()①②③④⑤A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)12.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.14.在面積為的中,,若點(diǎn)是的中點(diǎn),點(diǎn)滿足,則的最大值是______.15.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示,估算月經(jīng)濟(jì)損失的平均數(shù)為,中位數(shù)為n,則_________.16.已知,滿足不等式組,則的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.18.(12分)在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)為的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)過(guò)點(diǎn)的直線交曲線于,兩點(diǎn),為曲線上異于,的任意一點(diǎn),直線,分別交直線于,兩點(diǎn).問(wèn)是否為定值?若是,求的值;若不是,請(qǐng)說(shuō)明理由.19.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.20.(12分)已知直線:與拋物線切于點(diǎn),直線:過(guò)定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.21.(12分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點(diǎn),且點(diǎn)的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點(diǎn),且點(diǎn)的橫坐標(biāo)為,求的值.22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.3、B【解析】
利用基本不等式得,可判斷②;和聯(lián)立解得可判斷①③;由圖可判斷④.【詳解】,解得(當(dāng)且僅當(dāng)時(shí)取等號(hào)),則②正確;將和聯(lián)立,解得,即圓與曲線C相切于點(diǎn),,,,則①和③都錯(cuò)誤;由,得④正確.故選:B.【點(diǎn)睛】本題考查曲線與方程的應(yīng)用,根據(jù)方程,判斷曲線的性質(zhì)及結(jié)論,考查學(xué)生邏輯推理能力,是一道有一定難度的題.4、C【解析】略5、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.6、A【解析】
根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.7、A【解析】
先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.8、A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過(guò)排除法求得結(jié)果.【詳解】對(duì)于選項(xiàng)B,為奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí),,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D,,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問(wèn)題,通過(guò)函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.9、B【解析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點(diǎn)睛】面面平行的判定問(wèn)題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.10、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問(wèn)問(wèn)題求并集而不是交集.11、B【解析】
滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱,分別對(duì)所給函數(shù)進(jìn)行驗(yàn)證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關(guān)于原點(diǎn)對(duì)稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點(diǎn)睛】本題考查新定義函數(shù)的問(wèn)題,涉及到函數(shù)的性質(zhì),考查學(xué)生邏輯推理與分析能力,是一道容易題.12、D【解析】
利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.14、【解析】
由任意三角形面積公式與構(gòu)建關(guān)系表示|AB||AC|,再由已知與平面向量的線性運(yùn)算、平面向量數(shù)量積的運(yùn)算轉(zhuǎn)化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點(diǎn)M是AB的中點(diǎn),點(diǎn)N滿足,所以,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值是為.故答案為:【點(diǎn)睛】本題考查平面向量中由線性運(yùn)算表示未知向量,進(jìn)而由重要不等式求最值,屬于中檔題.15、360【解析】
先計(jì)算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過(guò)0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點(diǎn)睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.16、【解析】
畫出不等式組表示的平面區(qū)域如下圖中陰影部分所示,易知在點(diǎn)處取得最小值,即,所以由圖可知的取值范圍為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點(diǎn)在直線上,且知的斜率必定存在,分類討論當(dāng)?shù)男甭蕿闀r(shí)和斜率不為時(shí)的情況列出相應(yīng)式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點(diǎn)在軸上,且,所以.所以橢圓的方程為.由點(diǎn)在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿闀r(shí),,,于是,到的距離為,直線與圓相切.當(dāng)?shù)男甭什粸闀r(shí),設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時(shí),到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以面積的最小值為1.【點(diǎn)睛】本題主要考查直線與橢圓的位置關(guān)系、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查化歸與轉(zhuǎn)化思想,屬于難題.18、(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標(biāo)為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點(diǎn)的坐標(biāo),同理可得E點(diǎn)的坐標(biāo),最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動(dòng)點(diǎn)M的坐標(biāo)為,由知∥,又在直線上,所以P點(diǎn)坐標(biāo)為,又,點(diǎn)為的中點(diǎn),所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點(diǎn)的坐標(biāo)為,同理E點(diǎn)的坐標(biāo)為,于是,,所以,從而,所以是定值.【點(diǎn)睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問(wèn)題,在處理此類問(wèn)題一般要涉及根與系數(shù)的關(guān)系,本題思路簡(jiǎn)單,但計(jì)算量比較大,是一道有一定難度的題.19、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.20、(1),(1,2);(2)存在,【解析】
(1)由直線恒過(guò)點(diǎn)點(diǎn)及拋物線C上的點(diǎn)到點(diǎn)Q的距離與到準(zhǔn)線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點(diǎn)的坐標(biāo);(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實(shí)數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點(diǎn)Q的坐標(biāo)為拋物線的焦點(diǎn)坐標(biāo),由拋物線C上的點(diǎn)到點(diǎn)Q的距離與到其焦點(diǎn)F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因?yàn)橹本€與拋物線C相切,所以,解得,此時(shí),所以點(diǎn)P坐標(biāo)為(1,2)(2)設(shè)存在滿足條件的實(shí)數(shù),點(diǎn),聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實(shí)數(shù)=滿足條件.【點(diǎn)睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關(guān)系的綜合應(yīng)用,解答此類題目,通常聯(lián)立直線方程與拋物
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級(jí)生物下冊(cè) 4.6.1 人體對(duì)外界環(huán)境的感知教學(xué)實(shí)錄1 (新版)新人教版
- 辭職申請(qǐng)書集錦15篇
- 植樹節(jié)演講稿范文錦集8篇
- 全國(guó)人教版信息技術(shù)八年級(jí)下冊(cè)第二單元第8課《創(chuàng)建操作按鈕》教學(xué)實(shí)錄
- 2024秋八年級(jí)英語(yǔ)上冊(cè) Unit 2 How often do you exercise Section A(1a-2d)教學(xué)實(shí)錄 (新版)人教新目標(biāo)版
- 我的心愛(ài)之物作文素材大全10篇
- 2024年度水電設(shè)施安裝與調(diào)試合同屋3篇
- 本科畢業(yè)自我鑒定
- 二年級(jí)語(yǔ)文下冊(cè) 課文5 17 要是你在野外迷了路教學(xué)實(shí)錄 新人教版
- 江蘇省興化市高中地理 第二章 城市與城市化 2.2 不同等級(jí)城市的服務(wù)功能教學(xué)實(shí)錄 新人教版必修2
- 醫(yī)療器械質(zhì)量管理體系文件管理制度
- 解密市場(chǎng)營(yíng)銷(雙語(yǔ))智慧樹知到期末考試答案2024年
- 高考真題 選擇性必修3《邏輯與思維》-2024年高考政治一輪復(fù)習(xí)選擇題+主觀題(新教材新高考)(解析版)
- 監(jiān)察法學(xué)智慧樹知到期末考試答案2024年
- 百香果的栽培條件
- 2024版國(guó)開電大法學(xué)本科《商法》歷年期末考試總題庫(kù)
- 湖北省荊州市荊州八縣市區(qū)2023-2024學(xué)年高一上學(xué)期1月期末聯(lián)考物理試題(原卷版)
- 藥店法律法規(guī)應(yīng)用與合規(guī)培訓(xùn)
- 小程序商場(chǎng)方案
- 班組年終總結(jié)
- 小學(xué)科學(xué)人教鄂教版五年級(jí)下冊(cè)全冊(cè)教案2023春
評(píng)論
0/150
提交評(píng)論