數(shù)字圖像處理 圖像分割_第1頁
數(shù)字圖像處理 圖像分割_第2頁
數(shù)字圖像處理 圖像分割_第3頁
數(shù)字圖像處理 圖像分割_第4頁
數(shù)字圖像處理 圖像分割_第5頁
已閱讀5頁,還剩76頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

數(shù)字圖像處理

(DigitalImageProcessing)圖像分割I(lǐng)magesegmentationdividesanimageintoregionsthatareconnectedandhavesomesimilaritywithintheregionandsomedifferencebetweenadjacentregions.

Thegoalisusuallytofindindividualobjectsinanimage.Forthemostparttherearefundamentallytwokindsofapproachestosegmentation:discontinuityandsimilarity.Similaritymaybeduetopixelintensity,colorortexture.Differencesaresuddenchanges(discontinuities)inanyofthese,butespeciallysuddenchangesinintensityalongaboundaryline,whichiscalledanedge.ConceptsandApproachesWhatisImageSegmentation?ImageSegmentationMethodsThresholdingBoundary-basedRegion-based:regiongrowing,splittingandmergingConceptsandApproachesPartitionanimageintoregions,eachassociatedwithanobjectbutwhatdefinesanobject?Howtodefinethesimilaritybetweenregions?FromProf.XinLiAssumption:therangeofintensitylevelscoveredbyobjectsofinterestisdifferentfromthebackground.ThresholdingMethodThresholdingMethodthresholdinghistogramsinglethresholdmultiplethresholdsFrom[Gonzalez&Woods]GlobalThresholdingThresholdingMethod:BasicGlobalThresholding選取一個全局閾值T的初始估計用T分割圖像為兩部分:G1和G2計算區(qū)域G1和G2中的灰度均值m1和m2計算新的閾值:T=0.5(m1+m2)重復(fù)步驟2-4,直至T值收斂全局閾值估計基本算法GlobalThresholdingThresholdingMethod:BasicGlobalThresholdingThismethodtreatspixelvaluesasprobabilitydensityfunctions.Thegoalofthismethodistominimizetheprobabilityofmisclassifyingpixelsaseitherobjectorbackground.Therearetwokindsoferror:mislabelinganobjectpixelasbackground,andmislabelingabackgroundpixelasobject.OptimalGlobalThresholding計算圖像歸一化直方圖,pi(i=0,1,2,…,L-1)計算累積直方圖P1,令P2=1-P1計算累積灰度均值m1和m2計算全局灰度mG計算類間方差var(k)取使得var(k)最大的k值,即為Otsu閾值k*Otsu最佳全局閾值估計算法Otsu’sThresholdingThresholdingTheRoleofIlluminationThresholdingTheRoleofNoiseThresholdingTheRoleofNoise---DenosingThresholdingMethod:BasicGlobalThresholdingGlobalThresholding:WhendoesItNOTWork?AmeaningfulglobalthresholdmaynotexistImage-dependentglobalthresholdingBasicAdaptiveThresholdingBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundaryBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundarySplitSolutionSpatiallyadaptivethresholdingLocalizedprocessingBasicAdaptiveThresholdingThresholdingT=4ThresholdingT=7ThresholdingT=4ThresholdingT=7spatiallyadaptivethresholdselectionBasicAdaptiveThresholdingmergemergemergemergemergelocalsegmentationresultsBasicAdaptiveThresholdingAdaptiveThresholdingMultipleThresholdsColorimagesegmentationandclusteringColorimagesegmentationandclusteringRegion-BasedMethod:RegionGrowingFrom[Gonzalez&Woods]Key:similaritymeasureRegionGrowingStartfromaseed,andletitgrow(includesimilarneighborhood)Region-BasedMethod:SplitandMergeSplitandMergeIterativelysplit(non-similarregion)andmerge(similarregions)Example:quadtreeapproachFrom[Gonzalez&Woods]Region-BasedMethod:SplitandMergeoriginalimage4regions4regions(nothingtomerge)splitmergeExample:QuadtreeSplitandMergeProcedureIteration1SplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration113regions4regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration2SplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration210regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration3finalsegmentationresult2regionsSplitStep

spliteverynon-uniformregionto4Merge

Step

mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergeHardProblem:TexturesSimilaritymeasuremakesthedifferenceFromProf.XinLiedgedetectionboundarydetectionclassificationandlabelingimagesegmentationBoundary-BasedMethodDetectionofDiscontinuitiesTherearethreekindsofdiscontinuitiesofintensity:points,linesandedges.Themostcommonwaytolookfordiscontinuitiesistoscanasmallmaskovertheimage.Themaskdetermineswhichkindofdiscontinuitytolookfor.

PointDetection點(diǎn)檢測(拉普拉斯)模板LineDetectionOnlyslightlymorecommonthanpointdetectionistofindaonepixelwidelineinanimage.Fordigitalimagestheonlythreepointstraightlinesareonlyhorizontal,vertical,ordiagonal(+or–45

).LineDetectionEdgeDetectionEdgeDetectionEdgeDetectionEdgeDetection:GradientOperatorsFirst-orderderivatives:Thegradientofanimagef(x,y)atlocation(x,y)isdefinedasthevector:Themagnitudeofthisvector:Thedirectionofthisvector:EdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsRobertscross-gradientoperatorsPrewittoperatorsSobeloperatorsGradientOperators:ExampleGradientOperators:ExampleGradientOperators:ExampleEdgeDetection:GradientOperatorsSecond-orderderivatives:(TheLaplacian)TheLaplacianofan2Dfunctionf(x,y)isdefinedasTwoformsinpractice:EdgeDetection:Marr-HildrethEdgeDetectorConsiderthefunction:TheLaplacianofhisTheLaplacianofaGaussiansometimesiscalledtheMexicanhatfunction.Italsocanbecomputedby

smoothingtheimagewiththeGaussiansmoothingmask,followedbyapplicationoftheLaplacianmask.TheLaplacianofaGaussian(LoG)AGaussianfunctionEdgeDetection:Marr-HildrethEdgeDetectorEdgeDetection:Marr-HildrethEdgeDetectorZerocrossingofthesecondderivativeofafunctionindicatesthepresenceofamaximaEdgeDetection:Marr-HildrethEdgeDetectorStepsSmooththeimageusingGaussianfilterEnhancetheedgesusingLaplacianoperatorZerocrossingsdenotetheedgelocationUselinearinterpolationtodeterminethesub-pixellocationoftheedgeMarr-HildrethEdgeDetector:ExampleZeroCrossingsDetectionEdgeImageZeroCrossingsMarr-HildrethEdgeDetector:ExampleSobelgradientLaplacianmaskGaussiansmoothfunctionMarr-HildrethEdgeDetector:ExampleEdgeDetection:CannyEdgeDetectorOptimaledgedetectordependingonLowerrorrate–edgesshouldnotbemissedandtheremustnotbespuriousresponsesLocalization–distancebetweenpointsmarkedbythedetectorandtheactualcenteroftheedgeshouldbeminimumResponse–OnlyoneresponsetoasingleedgeOnedimensionalformulationAssumethat2DimageshaveconstantcrosssectioninsomedirectionEdgeDetection:CannyEdgeDetectorDependingontheaboveprinciples,severaloptimaledgedetectorsarecalculatedBestapproximationtotheabovedetectorsistheFirstDerivativeofGaussianItischosenbecauseoftheeaseofcomputationin2dimensionsImplementationofCannyEdgeDetectorStep1Noiseisfilteredout–usuallyaGaussianfilterisusedWidthischosencarefullyStep2EdgestrengthisfoundoutbytakingthegradientoftheimageARobertsmaskoraSobelmaskcanbeusedImplementationofCannyEdgeDetectorStep3FindtheedgedirectionStep4ResolveedgedirectionImplementationofCannyEdgeDetectorStep5Non-maximasuppression–tracealongtheedgedirectionandsuppressanypixelvaluenotconsideredtobeanedge.GivesathinlineforedgeStep6Usedouble/hysterisisthresholdingtoeliminatestreakingCannyEdgeDetectorWewishtomarkpointsalongthecurvewherethemagnitudeisbiggest.Wecandothisbylookingforamaximumalongaslicenormaltothecurve(non-maximumsuppression).Thesepointsshouldformacurve.Therearethentwoalgorithmicissues:atwhichpointisthemaximum,andwhereisthenextone?Non-MaximumSuppressionNon-MaximumSuppressionSuppressthepixelsin‘GradientMagnitudeImage’whicharenotlocalmaximumNon-MaximumSuppressionNon-MaximumSuppressionHysteresisThresholdingHysteresisThresholdingIfthegradientatapixelisabove‘High’,declareitan‘edgepixel’Ifthegradientatapixelisbelow‘Low’,declareita‘non-edge-pixel’Ifthegradientatapixelisbetween‘Low’and‘High’thendeclareitan‘edgepixel’ifandonlyifitisconnectedtoan‘edgepixel’directlyorviapixelsbetween‘Low’and‘High’HysteresisThresholdingCannyEdgeDetector:ExampleCannySobelEdgeDetection:CannyAlgorithmEdgeLinkingandBoundaryDetection:LocalProcessingTwopropertiesofedgepointsareusefulforedgelinking:thestrength(ormagnitude)ofthedetectededgepointstheirdirections(determinedfromgradientdirections)Thisisusuallydoneinlocalneighborhoods.Adjacentedgepointswithsimilar

magnitudeanddirectionarelinked.Forexample,anedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilartothepixelat(x,y)ifEdgeLinkingandBoundaryDetection:LocalProcessingInthisexample,wecanfindthelicenseplatecandidateafteredgelinkingprocess.HoughTransformMethodtoisolatetheshapesfromanimagePerformedafteredgedetectionNotaffectedbynoiseorgapsintheedgesTechniqueThresholdingisusedtoisolatepixelswithstrongedgegradientParametricequationofstraightlineisusedtomaptheedgepointstotheHoughparameterspacePointsofintersectionintheHoughparameterspacegivestheequationoflineonactualimageEdgeLinkingandB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論