




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年甘肅省武威市河西成功學(xué)校高三期中檢測(cè)試題數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“”的否定是()A. B.C. D.2.設(shè)集合,,則()A. B.C. D.3.給出以下四個(gè)命題:①依次首尾相接的四條線段必共面;②過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面;③空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.34.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形5.已知,則()A. B. C. D.6.某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為()A. B. C. D.27.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.68.若點(diǎn)是角的終邊上一點(diǎn),則()A. B. C. D.9.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.10.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.11.已知曲線,動(dòng)點(diǎn)在直線上,過(guò)點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,則直線截圓所得弦長(zhǎng)為()A. B.2 C.4 D.12.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為_(kāi)__________.14.已知,滿足,則的展開(kāi)式中的系數(shù)為_(kāi)_____.15.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.16.在的展開(kāi)式中,項(xiàng)的系數(shù)是__________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點(diǎn).(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點(diǎn)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值.22.(10分)在直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫(xiě)出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題,對(duì)命題進(jìn)行改寫(xiě)即可.【詳解】全稱(chēng)命題的否定是特稱(chēng)命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱(chēng)命題的否定,難度容易.2.D【解析】
利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.3.B【解析】
用空間四邊形對(duì)①進(jìn)行判斷;根據(jù)公理2對(duì)②進(jìn)行判斷;根據(jù)空間角的定義對(duì)③進(jìn)行判斷;根據(jù)空間直線位置關(guān)系對(duì)④進(jìn)行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯(cuò)誤.②中,由公理2知道,過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面,故②正確.③中,由空間角的定義知道,空間中如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ),故③錯(cuò)誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯(cuò)誤.故選:B【點(diǎn)睛】本小題考查空間點(diǎn),線,面的位置關(guān)系及其相關(guān)公理,定理及其推論的理解和認(rèn)識(shí);考查空間想象能力,推理論證能力,考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想.4.B【解析】
化簡(jiǎn)得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+1故選:B【點(diǎn)睛】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)的應(yīng)用,兩角差的正弦公式的應(yīng)用,解題的關(guān)鍵是靈活利用基本公式,屬于基礎(chǔ)題.5.C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).6.B【解析】
首先根據(jù)題中所給的三視圖,得到點(diǎn)M和點(diǎn)N在圓柱上所處的位置,將圓柱的側(cè)面展開(kāi)圖平鋪,點(diǎn)M、N在其四分之一的矩形的對(duì)角線的端點(diǎn)處,根據(jù)平面上兩點(diǎn)間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開(kāi)圖平鋪,可以確定點(diǎn)M和點(diǎn)N分別在以圓柱的高為長(zhǎng)方形的寬,圓柱底面圓周長(zhǎng)的四分之一為長(zhǎng)的長(zhǎng)方形的對(duì)角線的端點(diǎn)處,所以所求的最短路徑的長(zhǎng)度為,故選B.點(diǎn)睛:該題考查的是有關(guān)幾何體的表面上兩點(diǎn)之間的最短距離的求解問(wèn)題,在解題的過(guò)程中,需要明確兩個(gè)點(diǎn)在幾何體上所處的位置,再利用平面上兩點(diǎn)間直線段最短,所以處理方法就是將面切開(kāi)平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.7.B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來(lái)解決.8.A【解析】
根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點(diǎn)是角的終邊上一點(diǎn),根據(jù)三角函數(shù)的定義,可得,則,故選A.【點(diǎn)睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡(jiǎn)、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準(zhǔn)確化簡(jiǎn)、計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9.B【解析】
設(shè),通過(guò),再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來(lái)表示所求向量,利用平面向量表示法唯一來(lái)解決問(wèn)題.10.D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11.C【解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進(jìn)而得到切線方程,將點(diǎn)坐標(biāo)代入切線方程,抽象出直線方程,且過(guò)定點(diǎn)為已知圓的圓心,即可求解.【詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過(guò)點(diǎn),所以,即都在直線上,所以直線的方程為,恒過(guò)定點(diǎn),即直線過(guò)圓心,則直線截圓所得弦長(zhǎng)為4.故選:C.【點(diǎn)睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點(diǎn)所在直線求解是解題的關(guān)鍵,屬于中檔題.12.C【解析】
由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.14.1【解析】
根據(jù)二項(xiàng)式定理求出,然后再由二項(xiàng)式定理或多項(xiàng)式的乘法法則結(jié)合組合的知識(shí)求得系數(shù).【詳解】由題意,.∴的展開(kāi)式中的系數(shù)為.故答案為:1.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理的應(yīng)用是解題關(guān)鍵.15.【解析】
設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.16.【解析】的展開(kāi)式的通項(xiàng)為:.令,得.答案為:-40.點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第r+1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第r+1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析;(Ⅱ).【解析】試題分析:(1)取中點(diǎn),連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點(diǎn),連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因?yàn)椋?,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18.(1)見(jiàn)解析(2)【解析】
(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.19.(1)見(jiàn)證明;(2)【解析】
(1)設(shè)是的中點(diǎn),連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建空間直角坐標(biāo)系,分別計(jì)算各個(gè)點(diǎn)坐標(biāo),計(jì)算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點(diǎn),連接、,是的中點(diǎn),,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過(guò)點(diǎn)作,垂足為,平面,以為坐標(biāo)原點(diǎn),的方向?yàn)檩S的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個(gè)法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問(wèn)題,意在考查學(xué)生的空間想象能力和計(jì)算能力.20.(1)(2)【解析】
(1)由不等式可得,討論與的關(guān)系,即可得到結(jié)果;(2)先解得不等式,由集合M中有且僅有一個(gè)整數(shù),當(dāng)時(shí),則M中僅有的整數(shù)為;當(dāng)時(shí),則M中僅有的整數(shù)為,進(jìn)而求解即可.【詳解】解:(1)因?yàn)?所以,當(dāng),即時(shí),;當(dāng),即時(shí),;當(dāng),即時(shí),.(2)由得,當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;當(dāng),即時(shí),M中僅有的整數(shù)為,所以,即;綜上,滿足題意的k的范圍為【點(diǎn)睛】本題考查解一元二次不等式,考查由交集的結(jié)果求參數(shù)范圍,考查分類(lèi)討論思想與運(yùn)算能力.21.(1),(2)【解析】
試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡(jiǎn)為ρcosθ+ρsinθ=1,即為x+y=1.再利用點(diǎn)到直線距離公式得:設(shè)點(diǎn)P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡(jiǎn)為ρcosθ+ρsinθ=1,則直線l的直角坐標(biāo)方程為x+y=1.設(shè)點(diǎn)P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離,dmax=.考點(diǎn):極坐標(biāo)方程化為直角坐標(biāo)方程,點(diǎn)到直線距離公式22.(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 時(shí)尚潮流商場(chǎng)鞋帽區(qū)品牌聯(lián)合營(yíng)銷(xiāo)協(xié)議
- 餐飲學(xué)員合同協(xié)議書(shū)
- 鐵路周?chē)踩珔f(xié)議書(shū)
- 車(chē)輛承包保管協(xié)議書(shū)
- 酒店銷(xiāo)售bd協(xié)議書(shū)
- 香煙飲料轉(zhuǎn)讓協(xié)議書(shū)
- 東營(yíng)聯(lián)通5g協(xié)議書(shū)
- 首鋼礦業(yè)崗位協(xié)議書(shū)
- 閑置花卉轉(zhuǎn)讓協(xié)議書(shū)
- 農(nóng)業(yè)灌溉放水員協(xié)議書(shū)
- 《焊接機(jī)器人》課件
- DB52T 1211-2017 電站汽輪機(jī)數(shù)字電液控制系統(tǒng)并網(wǎng)試驗(yàn)及檢測(cè)指標(biāo)
- 服務(wù)流程模板
- 人教版英語(yǔ)八年級(jí)下冊(cè) Unit 6 知識(shí)點(diǎn)詳解及練習(xí)
- 2024年賓館衛(wèi)生管理制度(四篇)
- 2024年個(gè)人之間清賬協(xié)議書(shū)模板范本
- 2024年福建高考化學(xué)試卷(含答案解析)
- 實(shí)測(cè)實(shí)量專(zhuān)項(xiàng)方案
- 安徽彩色壓花地坪施工方案
- 【核心素養(yǎng)目標(biāo)】數(shù)學(xué)人教版八年級(jí)上冊(cè)11.3.1 多邊形 教案
- DB34T 3620-2020 楊樹(shù)立木材積表
評(píng)論
0/150
提交評(píng)論