《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第1頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第2頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第3頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第4頁
《信號與線性系統(tǒng)分析基礎(chǔ)》課件 劉秀環(huán) 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第5頁
已閱讀5頁,還剩210頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplacetransform:RightShiftinTimeProperty3:RightshiftintimeProof:Property3:Rightshiftintime(3)Property3:RightshiftintimeSolution:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:TimeScalingProperty4:TimescalingProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:ConvolutionTheoremsProperty5:Convolutioninthet-domainProof:Property5:Convolutioninthet-domainContinued:Property

6:Convolutioninthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Differentiationinthet-domainProperty7:Differentiationinthet-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Integrationinthet-domainProperty8:Integrationinthet-domainProof:Property8:Integrationinthet-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:DifferentiationandIntegrationinthes-DomainProperty9:Differentiationinthes-domainProof:Property10:Integrationinthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:InitialandFinal-ValuetheoremsProperty11:Initial-valuetheoremProof:Property12:Final-valuetheoremProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ComputationoftheInverseLaplaceTransform(Ⅱ)PartialFractionExpansionComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(1)Conditions:ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(2)ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(3)信號與系統(tǒng)SignalsandSystems吉林大學(xué)SolvingtheDifferentialEquationsinthes-DomainSolvingthedifferentialequationsinthes-domain[Example]Given:Find:

Solvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)Thes-DomainRepresentationsofCircuits(I)Thes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThesameresistanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)2TheformsofKVLandKCLinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheBlockDiagramofaSysteminthes-DomainTheblockdiagramofasysteminthes-domainScalarmultiplier1Adder/Subtractor2Theblockdiagramofasysteminthes-domainIntegrator3信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheDefinitionofTransferFunctionanditsSolutionsThedefinitionoftransferfunctionanditssolutionsThetransferfunctionⅠHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutionsHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutions2.Giventheimpulseresponseh(t)Thedefinitionoftransferfunctionanditssolutions3.GiventhestructureofthecircuitUsingthedefinitioninthes-domainrepresentationofthecircuit.4.Usingthepole-zeroplot信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheTransferFunctionandthePole-ZeroPlotThetransferfunctionandthepole-zeroplotPolesandzeros1Zeros:Poles:Thetransferfunctionandthepole-zeroplotThepole-zeroplot2Aplotinthecomplexplaneshowingthelocationsofallthepoles(markedby×)andallthezeros(markedby○)iscalledthepole-zeroplot.Zeros:Poles:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ApplicationsofthePole-ZeroPlot:DeterminingtheFormofh(t)Thepoles

beinglocatedintheopen

left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedintheopen

left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedattheorigin2Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedontheimaginaryaxis3Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedintheopen

right-halfcomplexplane4Applicationsofthepole-zeroplot:Determiningtheformofh(t)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Time-DomainAnalysisofDiscrete-TimeSystemsDiscrete-TimeSignalsDiscrete-TimeSignalsAdiscrete-timesignalf(k)hasvaluesforsomediscontinuouspointwhilehasnotdefinitionforotherpoints.k—integerDefinitionDiscrete-TimeSignalsAnalyticalmethod:Graphicalmethod:Sequencemethod:k=0RepresentationDiscrete-TimeSignalEnergyandPowerEnergy:Power:OperationofDiscrete-TimeSignalsAddition:Multiplication:Difference:forwarddifference:backwarddifferenceRunningsum:OperationofDiscrete-TimeSignalsTimeshift(m>0)RightshiftLeftshiftTransformationsoftheIndependentVariableOperationofDiscrete-TimeSignalsTimereversalTransformationsoftheIndependentVariablef(-k)isobtainedfromthesignalf(k)

byareflectionaboutk=0.BasicDiscrete-TimeSignalsUnitImpulseSequence(UnitSampleSequence)BasicDiscrete-TimeSignalsUnitStepSequenceBasicDiscrete-TimeSignalsRelationshipbetweend(k)ande(k)BasicDiscrete-TimeSignalsRectangularSequenceBasicDiscrete-TimeSignalsUnilateralexponentialsequenceswithrealvalues:f(k)=ak

(k)(aisarealnumber)BasicDiscrete-TimeSignalsUnitrampsequenceSinusoidalSequencesComplexExponentialSequences:Canda:complexnumbers信號與系統(tǒng)SignalsandSystems吉林大學(xué)RepresentationsofDiscrete-TimeSystemsRepresentationsofDiscrete-TimeSystemsAdiscrete-timesystemisasystemthattransformsdiscrete-timeinputsintodiscrete-timeoutputs.Definitionf(k):inputy(k):outputInput-outputrelation:f(k)→

y(k)RepresentationsofDiscrete-TimeSystemsnth-orderLinearConstant-CoefficientDifferenceEquation:LTISystemsDescribedbyDifferenceEquatioconstantsRepresentationsofDiscrete-TimeSystemsBlockDiagramRepresentationBasicelementsMultiplicationbyacoefficientAdderUnitDelayElementRepresentationsofDiscrete-TimeSystemsInterconnectionsofSystemsSeries(Cascade)interconnectionParallelinterconnectionFeedbackinterconnection信號與系統(tǒng)SignalsandSystems吉林大學(xué)Linearinput/outputdifferenceequationswithconstantcoefficientsInput:f(k)=0fork<0InitialCondition:y(0),y(1),y(2),…,y(n-1)InitialState:y(-1),y(-2),…,y(-n)Linearinput/outputdifferenceequationswithconstantcoefficientsEquation:Solution:Linearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionHomogeneousequation

CharacteristicequationCharacteristicroot

j(j=1,2,3,

,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k

≥0,y(0)=0,y(1)=2.Findyh(k)

.Characteristicequation:Homogeneousequation

CharacteristicequationCharacteristicroot

j(j=1,2,3,

,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k

≥0,y(0)=0,y(1)=2.Findyp(k),k

≥0.Letyp(k)=P·2k,k

≥0Substitutethesystemequation:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheZero-InputResponse

and

TheZero-StateResponseTheZero-InputResponse

Characteristicequation

j,(j=1,2,3,

,n)CharacteristicrootZero-InputResponse

yzi

(0),yzi

(1),…,yzi

(n-1)y(-1),y(-2),…,y(-n)

yzi(k)=y(k)-

yzs(k)=y(k),k<0InitialconditionCharacteristicequation:Characteristicroots:Zero-InputResponse:Example:TheZero-InputResponsey(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2kε(k),y(-1)=0,y(-2)=1/2.Findyzi(k),k

≥0.yzi(k)+3yzi(k-1)+2yzi(k-2)=0TheZero-StateResponseCharacteristicequation

j

(j=1,2,3,

,n)Characteristicroot(distinctroots

j

)Zero-StateResponseyzs(-1)=yzs(-2)=…=yzs

(-n)=0Initialstateyzs(0),yzs

(1),…,yzs

(n-1)Initialcondition信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitSampleResponse

and

TheUnitStepResponseTheUnitSampleResponseDefinitionTheunitsampleresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitpulse

(k).Denotedh(k)Initialstateh(-1)=h(-2)=…=h(-n)=0Initialconditionh(0),h(1),h(2),…,h(n-1)HowtofindSolvingadifferenceequationZ-transformTheUnitSampleResponseDeterminationk<0:

(k)

=0,h(k)=0k=0:

(k)

=1,h(0)——recursionk>0:

(k)

=0,h(k)——solutionofahomogeneousequationLTI

system:LetthenCi:determinedbyh1(1),h1(2),…,h1(n)TheUnitStepResponseDefinitionTheunitstepresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitstepsequencee

(k).Denotedg(k)Initialstateg(-1)=g(-2)=…=g(-n)=0Relationshipbetweenh(k)andg(k)信號與系統(tǒng)SignalsandSystems吉林大學(xué)ConvolutionSumConvolutionSum

Ingeneral,twodiscrete-timesignalsf1(k)andf2(k)DefinitionExample1:ConvolutionSumConvolution-SumRepresentationofLTIdiscrete-timesystemsThezero-stateresponse:ConvolutionSum:GraphicalRepresentationGraphicalRepresentationoftheconvolutionsumProcedure:Step1.Drawf1(i)andf2(i)Step2.Reverse

f2(i):f2(i)

f2(-i)Step3.Shift

f2(-i)bykpositiontotheright:f2(-i)

f2(k-i)

Step4.Multiplicationoff1(i)withf2(k-i):

f1(i)f2(k-i)

Step5.Summationoftheproductforallvaluesofi

yieldsonevalueofy(k)Step6.Repeatsteps3and5forallvaluesofk信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesoftheConvolutionSumPropertiesoftheConvolutionSumCommutativityProof:PropertiesoftheConvolutionSumAssociativityProof:CascadeinterconnectionofLTIsystemsPropertiesoftheConvolutionSumDistributivitywithadditionProof:ParallelinterconnectionofLTIsystemsPropertiesoftheConvolutionConvolutionwiththeunitpulseProof:Ifk1=0,thenPropertiesoftheConvolutionShiftpropertyProof:Iff(k)=f1(k)*f2(k),then

信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere

aisarealorcomplexnumber.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside

convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k

<k1,k>k2,k1<k2k1<0,k2>0:

k1<0,k2

0:k10,k2

>0:0<|z|<

|z|<

|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak

(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak

(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞

0<R1<R2<:R1<|z|<R2

R1>R2

:

ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——LinearityIff1(k)

F1(z),

1<

z

<

1,f2(k)

F2(z),

2<

z

<

2,thenLinearityExample:Iff1(k)

F1(z),

1<

z

<

1,f2(k)

F2(z),

2<

z

<

2,thenLinearityExample:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)

F(z),

<

z

<

,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)

F(z),

z

>

,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.Example:

(k+1)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof

:Scalinginthez-DomainIff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.Example:

aksin(

k)

(k),0<a<1Scalinginthez-DomainIff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.Example:(-1)k

(k)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)

F1(z),

1<z<

1,f2(k)

F2(z),

2<z<

2,thenConvolutionIff1(k)

F1(z),

1<z<

1,f2(k)

F2(z),

2<z<

2,thenExample:(k+1)

(k)LTIsystems:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)Integralinthez-DomainIff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)m=0,k>0:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)

F(z),

<

z

<

,then

Example:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——SummationSummationProof:Iff(k)

F(z),

<

z

<

,then

Example:信號與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)

F(z),then

Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Final-ValueTheoremIff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Example:f(k)=0,k<0. aisarealnumber,findf(

).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Example:f(k)=0,k<0. aisarealnumber,findf(

).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then

Example:Thez-transformofacausalsequencef(k)is

Poles:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e

(k)Anticausalsequence|z|<bf2(k)e

(-k-1)Two-sidedsequencea<|z|<b

f1(k)e(k)+

f2(k)e

(-k-1)信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions

DistinctPolesz1,2=ae±jbROC:|z|>

Complex

Poles:Partialfractionexpansions

DistinctPolesz1,2=ae±jbComplex

Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信號與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信號與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)

H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection

H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.Zerosro

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論