2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣西桂林,百色,梧州,北海,崇左五市數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足條件,則的值為()A.1 B.C.2 D.2.雙曲線實軸長為()A.1 B.C.2 D.3.等比數(shù)列中,,則()A. B.C.2 D.44.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.5.已知函數(shù)在定義域內(nèi)單調(diào)遞減,則實數(shù)的取值范圍是()A. B.C. D.6.攢(cuán)尖是我國古代建筑中屋頂?shù)囊环N結(jié)構(gòu)樣式,多見于亭閣或園林式建筑.下圖是一頂圓形攢尖,其屋頂可近似看作一個圓錐,其軸截面(過圓錐軸的截面)是底邊長為,頂角為的等腰三角形,則該屋頂?shù)拿娣e約為()A. B.C. D.7.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.8.已知雙曲線的右焦點為F,則點F到其一條漸近線的距離為()A.1 B.2C.3 D.49.設.若,則=()A. B.C. D.e10.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.411.當我們停放自行車時,只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點確定一平面 B.不共線三點確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面12.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.14.若函數(shù)在處取得極小值,則a=__________15.已知正項等比數(shù)列的前n項和為,且,則的最小值為_________16.已知曲線在點處的切線的斜率為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在公差為的等差數(shù)列中,已知,且成等比數(shù)列.(Ⅰ)求;(Ⅱ)若,求.18.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)設的前項和,求的值.19.(12分)計算:(1)求函數(shù)(a,b為正常數(shù))的導數(shù)(2)已知點P在曲線上,為曲線在點P處的切線的傾斜角,則的取值范圍20.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.21.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和22.(10分)設函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出坐標,進而根據(jù)空間向量垂直的坐標運算求得答案.【詳解】因為,所以,解得.故選:A.2、B【解析】由雙曲線的標準方程可求出,即可求雙曲線的實軸長.【詳解】由可得:,,即,實軸長,故選:B3、D【解析】利用等比數(shù)列的下標特點,即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D4、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C5、D【解析】由題意轉(zhuǎn)化為,恒成立,參變分離后轉(zhuǎn)化為,求函數(shù)的最大值,即可求解.【詳解】函數(shù)的定義域是,,若函數(shù)在定義域內(nèi)單調(diào)遞減,即在恒成立,所以,恒成立,即設,,當時,函數(shù)取得最大值1,所以.故選:D6、B【解析】由軸截面三角形,根據(jù)已知可得圓錐底面半徑和母線長,然后可解.【詳解】軸截面如圖,其中,,所以,所以,所以圓錐的側(cè)面積.故選:B7、C【解析】作垂直準線于,垂直準線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.8、A【解析】由雙曲線方程可寫出右焦點坐標,再寫一漸近線方程,根據(jù)點到直線的距離公式可得答案.【詳解】雙曲線的右焦點F坐標為,根據(jù)雙曲線的對稱性,不妨取一條漸近線為,故點F到漸近線的距離為,故選:A9、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.10、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.11、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時自行車與地面的三個接觸點不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時三個接觸點不在同一條線上,所以可以確定一個平面,即地面,從而使得自行車穩(wěn)定.故選B項.【點睛】本題考查不共線的三個點確定一個平面,屬于簡單題.12、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結(jié)合基本不等式即可求解詳解】如圖所示,設(),,則,,,,當且僅當即時等號成立,∴的最小值是.故答案為:14、2【解析】對函數(shù)求導,根據(jù)極值點得到或,討論的不同取值,利用導數(shù)的方法判定函數(shù)單調(diào)性,驗證極值點,即可得解.【詳解】由可得,因為函數(shù)在處取得極小值,所以,解得或,若,則,當時,,則單調(diào)遞增;當時,,則單調(diào)遞減;當時,,則單調(diào)遞增;所以函數(shù)在處取得極小值,符合題意;當時,,當時,,則單調(diào)遞增;當時,,則單調(diào)遞減;當時,,則單調(diào)遞增;所以函數(shù)在處取得極大值,不符合題意;綜上:.故答案為:2.【點睛】思路點睛:已知函數(shù)極值點求參數(shù)時,一般需要先對函數(shù)求導,根據(jù)極值點求出參數(shù),再驗證所求參數(shù)是否符合題意即可.15、16【解析】根據(jù)是等比數(shù)列,由,即可得也是等比數(shù)列,結(jié)合基本不等式的性質(zhì)即可求出的最小值.【詳解】是等比數(shù)列,,即,也是等比數(shù)列,且,,可得:,當且僅當時取等號,的最小值為16.故答案為:1616、【解析】對求導,根據(jù)題設有且,即可得目標式的值.【詳解】由題設,且定義域為,則,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由題意求得數(shù)列的公差后可得通項公式.(Ⅱ)結(jié)合條件可得,分和兩種情況去掉中的絕對值后,利用數(shù)列的前n項和公式求解試題解析:(Ⅰ)∵成等比數(shù)列,∴,整理得,解得或,當時,;當時,所以或(Ⅱ)設數(shù)列前項和為,∵,∴,當時,,∴;當時,綜上18、(1);(2).【解析】(1)設等差數(shù)列的公差為,利用題中等式建立、的方程組,求出、的值,然后根據(jù)等差數(shù)列的通項公式求出數(shù)列的通項公式;(2)利用等差數(shù)列前項和公式求出,然后由求出的值.【詳解】(1)設等差數(shù)列的公差為,則,解得,,數(shù)列的通項為;(2)數(shù)列的前項和,由,化簡得,即,.【點睛】本題考查等差數(shù)列的通項公式的求解,考查等差數(shù)列的前項和公式,常用的方法就是利用首項和公差建立方程組求解,考查運算求解能力,屬于中等題.19、(1)(2)【解析】(1)根據(jù)導數(shù)的運算法則,結(jié)合復合函數(shù)的求導法則,可得答案;(2)求出函數(shù)的導數(shù),結(jié)合基本不等式求得導數(shù)的取值范圍,根據(jù)導數(shù)的幾何意義結(jié)合正切函數(shù)的單調(diào)性,求得答案.【小問1詳解】由題意得:;【小問2詳解】,由于,故,當且僅當時取等號,故,則P處的切線的斜率,由為曲線在點P處的切線的傾斜角可得,由于,故的取值范圍為:.20、(1)(2)證明見解析(3)【解析】(1)求導,根據(jù)導數(shù)的幾何意義,令x=1處的切線的斜率等1,結(jié)合,即可求得a和b的值;(2)利用(1)的結(jié)論,構(gòu)造函數(shù),求求導數(shù),判斷單調(diào)性,求出最小值即可證明;(3)根據(jù)條件構(gòu)造函數(shù),求出其導數(shù),分類討論導數(shù)的值的情況,根據(jù)單調(diào)性,判斷函數(shù)的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調(diào)遞減,當時,,單調(diào)遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在時單調(diào)遞增,,適合題意;當時,,此時,此時在時單調(diào)遞增,,適合題意;當時,,此時在內(nèi),,在內(nèi),,故,顯然時,,不滿足當恒成立,綜上述:.21、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關(guān)的非零常數(shù),從而得出結(jié)論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論