版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省長春汽車經(jīng)濟開發(fā)區(qū)第六中學(xué)高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列選項中,與的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.2.已知的部分圖象如圖所示,則的表達式為A.B.C.D.3.若無論實數(shù)取何值,直線與圓相交,則的取值范圍為()A. B.C. D.4.已知集合和關(guān)系的韋恩圖如下,則陰影部分所表示的集合為()A. B.C. D.5.已知是定義在上的奇函數(shù)且單調(diào)遞增,,則的取值范圍是()A. B.C. D.6.如果,,那么()A. B.C. D.7.若,,,則實數(shù),,的大小關(guān)系為A. B.C. D.8.一個球的表面積是,那么這個球的體積為A. B.C. D.9.已知偶函數(shù)的定義域為,當(dāng)時,,若,則的解集為()A. B.C. D.10.有三個函數(shù):①,②,③,其中圖像是中心對稱圖形的函數(shù)共有().A.0個 B.1個C.2個 D.3個二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是__________.12.在直角坐標(biāo)系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標(biāo)分別為,則實數(shù)的取值集合為__________13.若向量,,且,則_____14.已知函數(shù),其所有的零點依次記為,則_________.15.已知點,點P是圓上任意一點,則面積的最大值是______.16.函數(shù)的定義域是______________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)若,求實數(shù)a的值;(2)若,且,求的值;(3)若函數(shù)在的最大值與最小值之和為2,求實數(shù)a的值18.甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.問:購買該商品的顧客在哪家商場中獎的可能性大?19.設(shè),函數(shù).(1)當(dāng)時,寫出的單調(diào)區(qū)間(不用寫出求解過程);(2)若有兩個零點,求的取值范圍.20.已知函數(shù)(0<ω<6)的圖象的一個對稱中心為(1)求f(x)的最小正周期;(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;(3)求f(x)在區(qū)間上的最大值和最小值21.已知實數(shù)是定義在上的奇函數(shù).(1)求的值;(2)求函數(shù)的值域;(3)當(dāng)時,恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先計算的值,再逐項計算各項的值,從而可得正確的選項.【詳解】.對于A,因為,故A正確.對于B,,故B正確.對于C,,故C錯誤.對于D,,故D正確.故選:C.2、B【解析】由圖可知,,所以,所以,又當(dāng),即,所以,即,當(dāng)時,,故選.考點:三角函數(shù)的圖象與性質(zhì).3、A【解析】利用二元二次方程表示圓的條件及點與圓的位置關(guān)系即得.【詳解】由圓,可知圓,∴,又∵直線,即,恒過定點,∴點在圓的內(nèi)部,∴,即,綜上,.故選:A.4、B【解析】首先判斷出陰影部分表示,然后求得,再求得.【詳解】依題意可知,,且陰影部分表示.,所以.故選:B【點睛】本小題主要考查根據(jù)韋恩圖進行集合的運算,屬于基礎(chǔ)題.5、A【解析】根據(jù)函數(shù)的奇偶性,把不等式轉(zhuǎn)化為,再結(jié)合函數(shù)的單調(diào)性,列出不等式組,即可求解.【詳解】由題意,函數(shù)是定義在上的奇函數(shù),所以,則不等式,可得,又因為單調(diào)遞增,所以,解得,故選:.【點睛】求解函數(shù)不等式的方法:1、解函數(shù)不等式的依據(jù)是函數(shù)的單調(diào)性的定義,具體步驟:①將函數(shù)不等式轉(zhuǎn)化為的形式;②根據(jù)函數(shù)的單調(diào)性去掉對應(yīng)法則“”轉(zhuǎn)化為形如:“”或“”的常規(guī)不等式,從而得解.2、利用函數(shù)的圖象研究不等式,當(dāng)不等式問題不能用代數(shù)法求解但其與函數(shù)有關(guān)時,常將不等式問題轉(zhuǎn)化為兩函數(shù)的圖象上、下關(guān)系問題,從而利用數(shù)形結(jié)合求解.6、D【解析】根據(jù)不等式的性質(zhì),對四個選項進行判斷,從而得到答案.【詳解】因為,所以,故A錯誤;因為,當(dāng)時,得,故B錯誤;因為,所以,故C錯誤;因為,所以,故D正確.故選:D.【點睛】本題考查不等式的性質(zhì),屬于簡單題.7、A【解析】先求出a,b,c的范圍,再比較大小即得解.【詳解】由題得,,所以a>b>c.故選A【點睛】本題主要考查對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查實數(shù)大小的比較,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.8、B【解析】先求球半徑,再求球體積.【詳解】因為,所以,選B.【點睛】本題考查球表面積與體積,考查基本求解能力,屬基礎(chǔ)題.9、D【解析】先由條件求出參數(shù),得到在上的單調(diào)性,結(jié)合和函數(shù)為偶函數(shù)進行求解即可.【詳解】因為為偶函數(shù),所以,解得.在上單調(diào)遞減,且.因為,所以,解得或.故選:D10、C【解析】根據(jù)反比例函數(shù)的對稱性,圖象變換,然后結(jié)合中心對稱圖形的定義判斷【詳解】,顯然函數(shù)的圖象是中心對稱圖形,對稱中心是,而的圖形是由的圖象向左平行3個單位,再向下平移1個單位得到的,對稱中心是,由得,于是不是中心對稱圖形,,中間是一條線段,它關(guān)于點對稱,因此有兩個中心對稱圖形故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先換元,再利用三角變換,將函數(shù)轉(zhuǎn)化為關(guān)于二次函數(shù),再求值域.【詳解】設(shè),因為,所以,則,,當(dāng)時,函數(shù)取得最小值,當(dāng)時,函數(shù)取得最大值,所以函數(shù)的值域是故答案為:12、【解析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內(nèi)切時,m的最小值為,故答案為[3,7]13、6【解析】本題首先可通過題意得出向量以及向量的坐標(biāo)表示和向量與向量之間的關(guān)系,然后通過向量平行的相關(guān)性質(zhì)即可得出結(jié)果?!驹斀狻恳驗?,,且,所以,解得?!军c睛】本題考查向量的相關(guān)性質(zhì),主要考查向量平行的相關(guān)性質(zhì),若向量,,,則有,鍛煉了學(xué)生對于向量公式的使用,是簡單題。14、16【解析】由零點定義,可得關(guān)于的方程.去絕對值分類討論化簡.將對數(shù)式化為指數(shù)式,再去絕對值可得四個方程.結(jié)合韋達定理,求得各自方程兩根的乘積,即可得所有根的積.【詳解】函數(shù)的零點即所以去絕對值可得或即或去絕對值可得或,或當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得當(dāng),兩邊同時乘以,化簡可得,設(shè)方程的根為.由韋達定理可得綜上可得所有零點的乘積為故答案為:【點睛】本題考查了函數(shù)零點定義,含絕對值方程的解法,分類討論思想的應(yīng)用,由韋達定理研究方程根的關(guān)系,屬于難題.15、【解析】由點可得直線AB的方程及的值,可得圓心到直線AB的距離d及P到直線AB的最大距離,可得面積的最大值是.【詳解】解:直線AB的方程為,圓心到直線AB的距離,點P到直線AB的最大距離為.故面積的最大值是.【點睛】本題主要考查直線與圓的位置關(guān)系,點到直線的距離公式及兩點間距離公式等,需綜合運用所學(xué)知識求解.16、【解析】由題意可得,從而可得答案.【詳解】函數(shù)的定義域滿足即,所以函數(shù)的定義域為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)1;(3)或【解析】(1)代入直接求解即可;(2)計算可知,由此得到;(3)分析可知函數(shù)在的最大值為2,討論即可得解詳解】解:(1)依題意,,即或,解得或;(2)依題意,,又,故,即,故;(3)顯然當(dāng)時,函數(shù)取得最小值為0,則函數(shù)在的最大值為2,結(jié)合(2)可知,,所以,解得或18、乙商場中獎的可能性大.【解析】分別計算兩種方案中獎的概率.先記出事件,得到試驗發(fā)生包含的所有事件,和符合條件的事件,由等可能事件的概率公式得到試題解析:如果顧客去甲商場,試驗的全部結(jié)果構(gòu)成的區(qū)域為圓盤的面積,陰影部分的面積為,則在甲商場中獎的概率為;如果顧客去乙商場,記3個白球為,,,3個紅球為,,,記(,)為一次摸球的結(jié)果,則一切可能的結(jié)果有:,,,,,,,,,,,,,,,共15種,摸到的是2個紅球有,,,共3種,則在乙商場中獎的概率為,又,則購買該商品的顧客在乙商場中獎的可能性大.19、(1)增區(qū)間是,減區(qū)間是;(2)【解析】(1)根據(jù)函數(shù)的圖象即可寫出;(2)根據(jù)函數(shù)零點的定義結(jié)合分類討論思想即可求出小問1詳解】的增區(qū)間是,減區(qū)間是【小問2詳解】由得;由得或,當(dāng)時,得或,所以1是的零點,①當(dāng)時,則都不是的零點,故只有一個零點;②當(dāng)時,即時,為使有兩個零點,則,解得,此時的兩個零點為.當(dāng)時,得,所以1不是的零點,為使有兩個零點,則,解得,此時的兩個零點為,所以.綜上,當(dāng)或時,即的取值范圍為,有兩個零點20、(1);(2)[],k∈Z;(3)最大值為10,最小值為【解析】(1)先降冪化簡原式,再利用對稱中心求得ω,進而得周期;(2)利用正弦函數(shù)的單調(diào)區(qū)間列出不等式即可得解;(3)利用(2)的結(jié)論,確定所給區(qū)間的單調(diào)性,再得最值【詳解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是對稱中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期為π;(2)由,得,∴f(x)的單調(diào)遞增區(qū)間為:[],k∈Z,(3)由(2)可知,f(x)在[]遞減,在[]遞增,可知當(dāng)x=時得最大值為0;當(dāng)x=時得最小值故f(x)在區(qū)間[]上的最大值為0,最小值為【點睛】此題考查了三角函數(shù)式的恒等變換,周期性,單調(diào)性,最值等,屬于中檔題21、(1);(2);(3).【解析】(1)由是定義在上的奇函數(shù),利用可得的值;(2)化簡利用指數(shù)函數(shù)的值域以及不等式的性質(zhì)可得函數(shù)的值域;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度國際船舶租賃合同環(huán)境保護責(zé)任與履約評估3篇
- 二零二五版?zhèn)€人住房抵押貸款合同2篇
- 2025年度家具租賃服務(wù)合同標(biāo)準(zhǔn)文本4篇
- 2025年肉類加工企業(yè)鮮豬肉原料采購合同3篇
- 2025年度生態(tài)農(nóng)業(yè)園區(qū)商鋪租賃合同規(guī)范2篇
- 2024租賃公司設(shè)備租賃與購買合同
- 二零二五版高壓電纜敷設(shè)電力施工勞務(wù)合同范本2篇
- 二零二五年度礦產(chǎn)品出口與國內(nèi)銷售合同3篇
- 2025年度運動服飾租賃服務(wù)合同樣本3篇
- 2025年度農(nóng)機作業(yè)租賃與農(nóng)村土地流轉(zhuǎn)服務(wù)合同
- 師德師風(fēng)警示教育培訓(xùn)內(nèi)容
- 2024年氫工藝作業(yè)考試題庫及答案(700題)
- 安徽省淮南四中2025屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 2025屆重慶南開中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析
- 2024年重點信訪人員穩(wěn)控實施方案
- 保險專題課件教學(xué)課件
- 常見癥狀腹痛課件
- 《生活垃圾的回收與利用》(教案)-2024-2025學(xué)年四年級上冊綜合實踐活動教科版
- 汽車租賃行業(yè)的利潤空間分析
- 電商代運營合作協(xié)議書2024年
- 2024年中考英語閱讀理解D篇真題匯編(附答案)0117
評論
0/150
提交評論