山西省朔州市2023-2024學年中考三模數學試題含解析_第1頁
山西省朔州市2023-2024學年中考三模數學試題含解析_第2頁
山西省朔州市2023-2024學年中考三模數學試題含解析_第3頁
山西省朔州市2023-2024學年中考三模數學試題含解析_第4頁
山西省朔州市2023-2024學年中考三模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省朔州市2023-2024學年中考三模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:①4a+2b<0;②﹣1≤a≤;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n﹣1有兩個不相等的實數根.其中結論正確的個數為()A.1個 B.2個 C.3個 D.4個2.把6800000,用科學記數法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×1083.計算-5+1的結果為()A.-6 B.-4 C.4 D.64.某種微生物半徑約為0.00000637米,該數字用科學記數法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣75.如圖,在平面直角坐標系中,點A在第一象限,點P在x軸上,若以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有()A.2個 B.3個 C.4個 D.5個6.下列運算正確的是()A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a67.一個正比例函數的圖象過點(2,﹣3),它的表達式為()A. B. C. D.8.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.只有一個實數根 D.沒有實數根9.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習10.一個空間幾何體的主視圖和左視圖都是邊長為2的正方形,俯視圖是一個圓,那么這個幾何體的表面積是()A.6πB.4πC.8πD.411.有一個數用科學記數法表示為5.2×105,則這個數是()A.520000 B. C.52000 D.520000012.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分式方程=1的解為_________.14.在“三角尺拼角”實驗中,小明同學把一副三角尺按如圖所示的方式放置,則∠1=__________°.15.計算2x3·x2的結果是_______.16.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.17.正多邊形的一個外角是,則這個多邊形的內角和的度數是___________________.18.已知a+1a=3,則a三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.20.(6分)反比例函數在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數的圖象于點M,△AOM的面積為2.求反比例函數的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數的圖象上,求t的值.21.(6分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數表達式;乙出發(fā)后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?22.(8分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?23.(8分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數m取何值,方程總有兩個實數根;(2)若方程兩個根均為正整數,求負整數m的值.24.(10分)已知AC=DC,AC⊥DC,直線MN經過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數量關系;(2)①如圖1,猜想AB,BD與BC之間的數量關系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數量關系;(3)在MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.25.(10分)某社區(qū)活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.26.(12分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數據:≈1.73)27.(12分)如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數據:sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結論①錯誤;

②利用一次函數圖象上點的坐標特征結合b=-2a可得出a=-,再結合拋物線與y軸交點的位置即可得出-1≤a≤-,結論②正確;

③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數m,a+b≥am2+bm總成立,結論③正確;

④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結論①錯誤;

②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),

∴2≤c≤3,

∴-1≤a≤-,結論②正確;

③∵a<0,頂點坐標為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對于任意實數m,a+b≥am2+bm總成立,結論③正確;

④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個交點,

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,

∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.

故選C.【點睛】本題考查了二次函數圖象與系數的關系、拋物線與x軸的交點以及二次函數的性質,觀察函數圖象,逐一分析四個結論的正誤是解題的關鍵.2、B【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.詳解:把6800000用科學記數法表示為6.8×1.故選B.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、B【解析】

根據有理數的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數的加法.4、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】0.00000637的小數點向右移動6位得到6.37所以0.00000637用科學記數法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、C【解析】

分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點),OA=AP(1點),OA=OP(2點)三種情況討論.∴以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有4個.故選C.【點睛】本題考查了等腰三角形的判定和坐標與圖形的性質,主要考查學生的動手操作能力和理解能力,注意不要漏解.6、D【解析】

根據完全平方公式、合并同類項、同底數冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數冪的除法、積的乘方以及合并同類項,解決本題的關鍵是熟記公式和法則.7、A【解析】

利用待定系數法即可求解.【詳解】設函數的解析式是y=kx,根據題意得:2k=﹣3,解得:k=.∴函數的解析式是:.故選A.8、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實數根.故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.9、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.10、A【解析】根據題意,可判斷出該幾何體為圓柱.且已知底面半徑以及高,易求表面積.解答:解:根據題目的描述,可以判斷出這個幾何體應該是個圓柱,且它的底面圓的半徑為1,高為2,那么它的表面積=2π×2+π×1×1×2=6π,故選A.11、A【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】5.2×105=520000,故選A.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、B【解析】根據垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數的定義是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x=1【解析】分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗:x=1時,x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點睛:此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.14、1【解析】試題分析:由三角形的外角的性質可知,∠1=90°+30°=1°,故答案為1.考點:三角形的外角性質;三角形內角和定理.15、【解析】試題分析:根據單項式乘以單項式,結合同底數冪相乘,底數不變,指數相加,可知2x3·x2=2x3+2=2x5.故答案為:2x516、【解析】

由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質與判定、含30°直角三角形的性質以及直角三角形斜邊的中線的性質.此題難度適中,屬于中考常見題型,求出OP的長是解題關鍵.17、540°【解析】

根據多邊形的外角和為360°,因此可以求出多邊形的邊數為360°÷72°=5,根據多邊形的內角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內角和與外角和18、7【解析】

根據完全平方公式可得:原式=(a+1三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)【解析】

(1)連結OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據平行線的性質得OD⊥CE,然后根據切線的判定定理得到結論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【詳解】(1)證明:連結OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.20、(2)(2)7或2.【解析】試題分析:(2)根據反比例函數k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數解析式為y=;(2)分類討論:當以AB為一邊的正方形ABCD的頂點D在反比例函數y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數圖象上點的坐標特征確定M點坐標為(2,6),則AB=AM=6,所以t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數y=的圖象上,根據正方形的性質得AB=BC=t-2,則C點坐標為(t,t-2),然后利用反比例函數圖象上點的坐標特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數解析式為y=;(2)當以AB為一邊的正方形ABCD的頂點D在反比例函數y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標為(2,6),∴AB=AM=6,∴t=2+6=7;當以AB為一邊的正方形ABCD的頂點C在反比例函數y=的圖象上,則AB=BC=t-2,∴C點坐標為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數y=的圖象上時,t的值為7或2.考點:反比例函數綜合題.21、(1)60;(2)s=10t-6000;(3)乙出發(fā)5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數法求一次函數解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發(fā)5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數法求一次函數解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數解決實際問題,屬于中考??碱}型.22、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米;(2)共有三種調配方案.方案一:型挖據機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據題意列出方程組即可;(2)利用總費用不超過12960元求出方案數量,再利用一次函數增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據機有臺.根據題意,得,因為,解得,又因為,解得,所以.所以,共有三種調配方案.方案一:當時,,即型挖據機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數的性質可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數增減性,解答時先根據題意確定自變量取值范圍,再應用一次函數性質解答問題.23、(1)見解析;(2)m=-1.【解析】

(1)根據方程的系數結合根的判別式,即可得出△=1>1,由此即可證出:無論實數m取什么值,方程總有兩個不相等的實數根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據已知條件即可得出結論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個根均為正整數,且m為負整數∴m=-1.【點睛】本題考查了一元二次方程與根的判別式,解題的關鍵是熟練的掌握根的判別式與根據因式分解法解一元二次方程.24、(1)相等或互補;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點C,D在直線MN同側和點C,D在直線MN兩側,兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當點C,D在直線MN同側,當點C,D在直線MN兩側,兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補;理由:當點C,D在直線MN同側時,如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當點C,D在直線MN兩側時,如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數量是相等或互補;(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當點C,D在直線MN同側時,如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當點C,D在直線MN兩側時,如圖2﹣1,過點D作DG⊥CB交CB的延長線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點睛】本題考查了三角形中的邊長關系,等腰直角三角形的性質,中等難度,分類討論與作輔助線是解題關鍵.25、解:(1)yA=27x+270,yB=30x+240;(2)當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算;(3)先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【解析】

(1)根據購買費用=單價

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論