2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題含解析_第1頁
2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題含解析_第2頁
2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題含解析_第3頁
2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題含解析_第4頁
2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省佛山市數(shù)學高一上期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則的大小關系為()A. B.C. D.2.已知函數(shù),若方程有8個相異實根,則實數(shù)的取值范圍A. B.C. D.3.若,,則的值為()A. B.C. D.4.如圖,某幾何體的三視圖是三個半徑相等的圓及每個圓中兩條互相垂直的半徑.若該幾何體的體積是,則它的表面積是A.17π B.18πC.20π D.28π5.在平面直角坐標系中,角與角項點都在坐標原點,始邊都與x軸的非負半軸重合,它們的終邊關于y軸對稱,若,則()A. B.C. D.6.已知的三個頂點A,B,C及半面內(nèi)的一點P,若,則點P與的位置關系是A.點P在內(nèi)部 B.點P在外部C.點P在線段AC上 D.點P在直線AB上7.四面體中,各個側面都是邊長為的正三角形,分別是和的中點,則異面直線與所成的角等于()A.30° B.45°C.60° D.90°8.已知直線,若,則的值為()A.8 B.2C. D.-29.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},則A∩B等于()A. B.C. D.,10.已知是定義在R上的奇函數(shù),在區(qū)間上為增函數(shù),則不等式的解集為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,若,則的形狀一定是___________三角形.12.若函數(shù)與函數(shù)的最小正周期相同,則實數(shù)______13.已知直線:,直線:,若,則__________14.函數(shù)的圖象為,以下結論中正確的是______(寫出所有正確結論的編號).①圖象關于直線對稱;②圖象關于點對稱;③由的圖象向右平移個單位長度可以得到圖象;④函數(shù)在區(qū)間內(nèi)是增函數(shù).15.已知冪函數(shù)在上單調(diào)遞減,則___________.16.不等式對于任意的x,y∈R恒成立,則實數(shù)k的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知全集,若集合,.(1)若,求;(2)若,求實數(shù)的取值范圍.18.已知的頂點,邊上的中線所在的直線方程為,邊上的高所在的直線方程為.(1)求點的坐標;(2)求所在直線的方程.19.如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段,的中點,為線段上任意一點.(1)證明:平面.(2)若,證明:平面平面.20.素有“天府之國”美稱的四川省成都市,屬于亞熱帶季風性濕潤氣候.據(jù)成都市氣象局多年的統(tǒng)計資料顯示,成都市從1月份到12月份的平均溫(℃)與月份數(shù)(月)近似滿足函數(shù),從1月份到7月份的月平均氣溫的散點圖如下圖所示,且1月份和7月份的平均氣溫分別為成都全年的最低和最高的月平均氣溫.(1)求月平均氣溫(℃)與月份數(shù)(月)的函數(shù)解析式;(2)推算出成都全年月平均氣溫低于但又不低于的是哪些月份.21.已知集合,(1)若,求;(2)若,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題,,,所以的大小關系為.故選A.點晴:本題考查的是對數(shù)式的大小比較.解決本題的關鍵是利用對數(shù)函數(shù)的單調(diào)性比較大小,當對數(shù)函數(shù)的底數(shù)大于0小于1時,對數(shù)函數(shù)是單調(diào)遞減的,當?shù)讛?shù)大于1時,對數(shù)函數(shù)是單調(diào)遞增的;另外由于對數(shù)函數(shù)過點(1,0),所以還經(jīng)常借助特殊值0,1,2等比較大小.2、D【解析】畫出函數(shù)的圖象如下圖所示.由題意知,當時,;當時,設,則原方程化為,∵方程有8個相異實根,∴關于的方程在上有兩個不等實根令,則,解得∴實數(shù)的取值范圍為.選D點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.本題中在結合函數(shù)圖象分析得基礎上還用到了方程根的分布的有關知識3、D【解析】根據(jù)誘導公式即可直接求值.【詳解】因為,所以,又因為,所以,所以.故選:D.4、A【解析】由三視圖知,該幾何體的直觀圖如圖所示:是一個球被切掉左上角的,即該幾何體是個球,設球的半徑為,則,解得,所以它的表面積是的球面面積和三個扇形面積之和,即,故選A【考點】三視圖及球的表面積與體積【名師點睛】由于三視圖能有效地考查學生的空間想象能力,所以以三視圖為載體的立體幾何題基本上是高考每年必考內(nèi)容,高考試題中三視圖一般與幾何體的表面積與體積相結合.由三視圖還原出原幾何體是解決此類問題的關鍵.5、A【解析】利用終邊相同的角和誘導公式求解.【詳解】因為角與角的終邊關于y軸對稱,所以,所以,故選:A6、C【解析】由平面向量的加減運算得:,所以:,由向量共線得:即點P在線段AC上,得解【詳解】因為:,所以:,所以:,即點P在線段AC上,故選C.【點睛】本題考查了平面向量的加減運算及向量共線,屬簡單題.7、B【解析】利用中位線定理可得GE∥SA,則∠GEF為異面直線EF與SA所成的角,判斷三角形為等腰直角三角形即可.【詳解】取AC中點G,連接EG,GF,F(xiàn)C設棱長為2,則CF=,而CE=1∴EF=,GE=1,GF=1而GE∥SA,∴∠GEF為異面直線EF與SA所成的角∵EF=,GE=1,GF=1∴△GEF為等腰直角三角形,故∠GEF=45°故選:B.【點睛】求異面直線所成的角先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結果一定要取絕對值.8、D【解析】根據(jù)兩條直線垂直,列方程求解即可.【詳解】由題:直線相互垂直,所以,解得:.故選:D【點睛】此題考查根據(jù)兩條直線垂直,求參數(shù)的取值,關鍵在于熟練掌握垂直關系的表達方式,列方程求解.9、A【解析】由得,得,則,故選A.10、C【解析】由奇函數(shù)知,再結合單調(diào)性及得,解不等式即可.【詳解】由題意知:,又在區(qū)間上為增函數(shù),當時,,當時,,由可得,解得.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、等腰【解析】根據(jù)可得,利用兩角和的正弦公式展開,再逆用兩角差的正弦公式化簡,結合三角形內(nèi)角的范圍可得,即可得的形狀.【詳解】因,,所以,即,所以,可得:,因為,,所以所以,即,故是等腰三角形.故答案為:等腰.12、【解析】求出兩個函數(shù)的周期,利用周期相等,推出a的值【詳解】:函數(shù)的周期是;函數(shù)的最小正周期是:;因為周期相同,所以,解得故答案為【點睛】本題是基礎題,考查三角函數(shù)的周期的求法,考查計算能力13、1【解析】根據(jù)兩直線垂直時,系數(shù)間滿足的關系列方程即可求解.【詳解】由題意可得:,解得:故答案為:【點睛】本題考查直線垂直的位置關系,考查理解辨析能力,屬于基礎題.14、①②④【解析】利用整體代入的方式求出對稱中心和對稱軸,分析單調(diào)區(qū)間,利用函數(shù)的平移方式檢驗平移后的圖象.【詳解】由題意,,令,,當時,即函數(shù)的一條對稱軸,所以①正確;令,,當時,,所以是函數(shù)的一個對稱中心,所以②正確;當,,在區(qū)間內(nèi)是增函數(shù),所以④正確;的圖象向右平移個單位長度得到,與函數(shù)不相等,所以③錯誤.故答案為:①②④.15、【解析】由系數(shù)為1解出的值,再由單調(diào)性確定結論【詳解】由題意,解得或,若,則函數(shù)為,在上遞增,不合題意若,則函數(shù)為,滿足題意故答案為:16、【解析】根據(jù)給定條件將命題轉化為關于x的一元二次不等式恒成立,再利用關于y的不等式恒成立即可計算作答.【詳解】因為對于任意的x,y∈R恒成立,于是得關于x的一元二次不等式對于任意的x,y∈R恒成立,因此,對于任意的y∈R恒成立,故有,解得,所以實數(shù)k的取值范圍為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用集合的交集及補集的定義直接求解即可;(2)由可得,利用集合的包含關系求解即可.【詳解】(1)當時,,所以,因為,所以;(2)由得,,所以【點睛】本題主要考查了集合的運算及包含關系求參,屬于基礎題.18、(1)(2)【解析】(1)根據(jù)AC和BH的垂直關系可得到直線的方程為,再代入點A的坐標可得到直線的方程為,聯(lián)立CM直線可得到C點坐標;(2)設,則,將兩個點分別帶入BH和CM即可求出,結合第一問得到BC的方程解析:(1)因為,的方程為,不妨設直線的方程為,將代入得,解得,所以直線的方程為,聯(lián)立直線的方程,即,解得點的坐標為.(2)設,則,因為點在上,點在上,所以,解得,所以,所以直線的方程為,整理得.19、(1)詳見解析;(2)詳見解析.【解析】(1)由題可得,進而可得平面,因為,,所以四邊形為平行四邊形,即,從而得出平面,平面平面,進而證得平面(2)由題可先證明四邊形為正方形,連接,則,再證得平面,進而證得平面平面.【詳解】證明:(1)因平面,平面,所以.因為平面,平面,所以平面.因為,,所以四邊形為平行四邊形,所以.因為平面,平面,所以平面.因為,所以平面平面,因為平面,所以平面.(2)因為,所以為等腰直角三角形,則.因為為的中點,且四邊形為平行四邊形,所以,故四邊形為正方形.連接,則.因為平面,平面,所以.因為,平面,平面,所以平面.因為分別,的中點,所以,則平面.因為平面,所以平面平面.【點睛】本題主要考查證明線面平行問題以及面面垂直問題,屬于一般題20、(1).(2)3月、4月、9月、10月【解析】(1)利用五點法求出函數(shù)解析式;(2)解不等式可得結論【詳解】(1)由題意,,,,又,而,∴∴(2)由,解得或或,又,∴3,4,9,10∴全年月平均氣溫低于但又不低于的是3月、4月、9月、10月【點睛】方法點睛:本題三角函數(shù)應用,解題關鍵是根據(jù)已知函數(shù)模型求出函數(shù)解析式,掌握五點法是解題基礎,然后根據(jù)函數(shù)解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論