版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆吉林省白城市通渭縣三校高一上數(shù)學(xué)期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)與的圖像關(guān)于對稱,則()A.3 B.C.1 D.2.如圖,一個直三棱柱形容器中盛有水,且側(cè)棱.若側(cè)面水平放置時,液面恰好過的中點,當?shù)酌鍭BC水平放置時,液面高為()A.6 B.7C.2 D.43.的值為()A. B.C. D.4.已知冪函數(shù)的圖象過點,則等于()A. B.C. D.5.已知函數(shù)(,且)在上單調(diào)遞減,且關(guān)于x的方程恰有兩個不相等的實數(shù)解,則的取值范圍是A. B.[,]C.[,]{} D.[,){}6.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.7.下列函數(shù)中,周期為的是()A. B.C. D.8.下列各式化簡后的結(jié)果為cosxA.sinx+πC.sinx-π9.為了得到函數(shù)的圖象,可以將函數(shù)的圖象A.向右平移個單位 B.向左平移個單位C.向右平移個單位 D.向左平移個單位10.甲、乙兩人在相同的條件下各打靶6次,每次打靶的情況如圖所示(虛線為甲的折線圖),則以下說法錯誤的是A.甲、乙兩人打靶的平均環(huán)數(shù)相等B.甲的環(huán)數(shù)的中位數(shù)比乙的大C.甲的環(huán)數(shù)的眾數(shù)比乙的大D.甲打靶的成績比乙的更穩(wěn)定二、填空題:本大題共6小題,每小題5分,共30分。11.若,則實數(shù)的值為______.12.已知函數(shù),,若對任意的,都存在,使得,則實數(shù)的取值范圍為_________.13.的值為________14.若函數(shù)是定義在上的嚴格增函數(shù),且對一切x,滿足,則不等式的解集為___________.15.如圖所示,正方體的棱長為1,B′C∩BC′=O,則AO與A′C′所成角的度數(shù)為________.16.如圖,若角的終邊與單位圓交于點,則________,________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.18.設(shè)函數(shù).(1)當時,求函數(shù)的零點;(2)當時,判斷的奇偶性并給予證明;(3)當時,恒成立,求m的最大值.19.某形場地,,米(、足夠長).現(xiàn)修一條水泥路在上,在上),在四邊形中種植三種花卉,為了美觀起見,決定在上取一點,使且.現(xiàn)將鋪成鵝卵石路,設(shè)鵝卵石路總長為米.(1)設(shè),將l表示成的函數(shù)關(guān)系式;(2)求l的最小值.20.已知定理:“若、為常數(shù),滿足,則函數(shù)的圖象關(guān)于點中心對稱”.設(shè)函數(shù),定義域為.(1)試求的圖象對稱中心,并用上述定理證明;(2)對于給定的,設(shè)計構(gòu)造過程:、、、.如果,構(gòu)造過程將繼續(xù)下去;如果,構(gòu)造過程將停止.若對任意,構(gòu)造過程可以無限進行下去,求的取值范圍.21.已知函數(shù);(1)求的定義域與最小正周期;(2)求在區(qū)間上的單調(diào)性與最值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)同底的指數(shù)函數(shù)和對數(shù)函數(shù)互為反函數(shù)可解.【詳解】由題知是的反函數(shù),所以,所以.故選:B.2、A【解析】根據(jù)題意,當側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,由已知條件求出水的體積;當?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,故水的體積可以用三角形的面積直接表示出,計算即可得答案【詳解】根據(jù)題意,當側(cè)面AA1B1B水平放置時,水的形狀為四棱柱形,底面是梯形,設(shè)△ABC的面積為S,則S梯形=S,水的體積V水=S×AA1=6S,當?shù)酌鍭BC水平放置時,水的形狀為三棱柱形,設(shè)水面高為h,則有V水=Sh=6S,故h=6故選A【點睛】本題考點是棱柱的體積計算,考查用體積公式來求高,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題3、B【解析】由誘導(dǎo)公式可得,故選B.4、A【解析】根據(jù)冪函數(shù)的定義,結(jié)合代入法進行求解即可.【詳解】因為是冪函數(shù),所以,又因為函數(shù)的圖象過點,所以,因此,故選:A5、C【解析】由在上單調(diào)遞減可知,由方程恰好有兩個不相等的實數(shù)解,可知,,又時,拋物線與直線相切,也符合題意,∴實數(shù)的取值范圍是,故選C.【考點】函數(shù)性質(zhì)綜合應(yīng)用【名師點睛】已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解6、B【解析】根據(jù)函數(shù)的定義域求出的范圍,結(jié)合分母不為0求出函數(shù)的定義域即可【詳解】由題意得:,解得:,由,解得:,故函數(shù)的定義域是,故選:B7、C【解析】對于A、B:直接求出周期;對于C:先用二倍角公式化簡,再求其周期;對于D:不是周期函數(shù),即可判斷.【詳解】對于A:的周期為,故A錯誤;對于B:的周期為,故B錯誤;對于C:,所以其周期為,故C正確;對于D:不是周期函數(shù),沒有最小正周期,故D錯誤.故選:C8、A【解析】利用誘導(dǎo)公式化簡每一個選項即得解.【詳解】解:A.sinx+B.sin2π+xC.sinx-D.sin2π-x故選:A9、D【解析】因為,所以將函數(shù)的圖象向左平移個單位,選D.考點:三角函數(shù)圖像變換【易錯點睛】對y=Asin(ωx+φ)進行圖象變換時應(yīng)注意以下兩點:(1)平移變換時,x變?yōu)閤±a(a>0),變換后的函數(shù)解析式為y=Asin[ω(x±a)+φ];(2)伸縮變換時,x變?yōu)椋M坐標變?yōu)樵瓉淼膋倍),變換后的函數(shù)解析式為y=Asin(x+φ)10、C【解析】甲:8,6,8,6,9,8,平均數(shù)為7.5,中位數(shù)為8,眾數(shù)為8;乙:4,6,8,7,10,10,平均數(shù)為7.5,中位數(shù)7.5,眾數(shù)為10;所以可知錯誤的是C.由折線圖可看出乙的波動比甲大,所以甲更穩(wěn)定.故選C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由指數(shù)式與對數(shù)式的互化公式求解即可【詳解】因為,所以,故答案為:12、##a≤【解析】時,,原問題.【詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當時,顯然不等式恒成立;當時,,解得;當時,,此時不成立.綜上,.故答案為:.13、【解析】根據(jù)兩角和的正弦公式即可求出【詳解】原式故答案為:14、【解析】根據(jù)題意,將問題轉(zhuǎn)化為,,再根據(jù)單調(diào)性解不等式即可得答案.【詳解】解:因為函數(shù)對一切x,滿足,所以,,令,則,即,所以等價于,因為函數(shù)是定義在上的嚴格增函數(shù),所以,解得所以不等式的解集為故答案為:15、30°【解析】∵A′C′∥AC,∴AO與A′C′所成的角就是∠OAC(或其補角).∵OC?平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO?平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO與A′C′所成角度數(shù)為30°.點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角16、①.##0.8②.【解析】根據(jù)單位圓中的勾股定理和點所在象限求出,然后根據(jù)三角函數(shù)的定義求出即可【詳解】如圖所示,點位于第一象限,則有:,且解得:(其中)故答案為:;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)根據(jù)角的終邊經(jīng)過點求,再由題意得周期求即可;(2)根據(jù)正弦函數(shù)的單調(diào)性求單調(diào)區(qū)間即可.【小問1詳解】因為角的終邊經(jīng)過點,所以,若時,的最小值為可知,∴【小問2詳解】令,解得故單調(diào)遞增區(qū)間為:,18、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時,恒成立,轉(zhuǎn)化為,在上恒成立求解.【小問1詳解】解:當時,由,解得或,∴函數(shù)的零點為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關(guān)于原點對稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當時,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調(diào)遞增∴,∴,故m的最大值為3.19、(1)見解析;(2)20.【解析】(1)設(shè),可得:,;(2)利用二次函數(shù)求最值即可.試題解析:(1)設(shè)米,則即,(2),當,即時,取得最小值為,的最小值為20.答:的最小值為20.20、(1),證明見解析;(2).【解析】(1)計算出的值,由此可得出結(jié)論;(2)分、、三種情況討論,求出函數(shù)的值域,根據(jù)題意可得出關(guān)于實數(shù)的不等式組,由此可求得實數(shù)的取值范圍.【詳解】(1),由已知定理得,的圖象關(guān)于點成中心對稱;(2),當時,若,由基本不等式可得,若,由基本不等式可得.此時,函數(shù)的值域為,當時,的值域為,當時,的值域為,因為構(gòu)造過程可以無限進行下去,對任意恒成立或,由此得到.因此,實數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美容日常知識培訓(xùn)課件
- 2024年適用:服務(wù)行業(yè)勞動合同
- 《MPS程式制作》課件
- 質(zhì)檢統(tǒng)計知識培訓(xùn)課件
- 母嬰護理知識培訓(xùn)課件
- 2024年遺產(chǎn)預(yù)分割協(xié)議:兄妹間財產(chǎn)分配3篇
- 《安全檔案講課完全》課件
- 肇慶醫(yī)學(xué)高等??茖W(xué)?!妒覂?nèi)空間設(shè)計II》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年魔術(shù)演出專用合同格式3篇
- 《公司的解散和清算》課件
- 定向鉆電力頂管施工方案
- 外研版八年級英語上冊期末單詞詞性分類測試表(漢譯英)
- 公路路基路面現(xiàn)場測試隨機選點記錄
- 一氧化氮讓你遠離心腦血管病第(全書回顧綜合版)
- 2022年天津三源電力集團限公司社會招聘33人上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 2023-2024學(xué)年廣東廣州番禺區(qū)四年級數(shù)學(xué)第一學(xué)期期末綜合測試試題含答案
- 尿崩癥診療規(guī)范內(nèi)科學(xué)診療規(guī)范診療指南2023版
- 壓縮語段之語段要點概括公開課一等獎市優(yōu)質(zhì)課賽課獲獎?wù)n件
- 零售藥店醫(yī)保培訓(xùn)試題及答案,零售藥店醫(yī)保培
- 軍營防襲擊應(yīng)急預(yù)案方案
- 2023年浙江夏季世界少年思維研學(xué)“丁一杯”二年級數(shù)學(xué)模擬卷(一)含答案
評論
0/150
提交評論