版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆日喀則市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.2.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件3.在空間直角坐標(biāo)系下,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為()A. B.C. D.4.設(shè)aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知點(diǎn)A、是拋物線:上的兩點(diǎn),且線段過拋物線的焦點(diǎn),若的中點(diǎn)到軸的距離為3,則()A.3 B.4C.6 D.86.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=17.已知函數(shù)的圖象過點(diǎn),令.記數(shù)列的前n項(xiàng)和為,則()A. B.C. D.8.過原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B.C. D.10.已知命題對(duì)任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.11.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(zhǎng)(直線到的距離),則該羨除的體積為()A. B.C. D.12.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為__________14.橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則的標(biāo)準(zhǔn)方程為______.15.直線被圓所截得的弦的長(zhǎng)為_____16.直線l過拋物線的焦點(diǎn)F,與拋物線交于A,B兩點(diǎn),若,則直線l的斜率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知命題實(shí)數(shù)滿足成立,命題方程表示焦點(diǎn)在軸上的橢圓,若命題為真,命題或?yàn)檎?,求?shí)數(shù)的取值范圍18.(12分)已知函數(shù),(1)討論的單調(diào)性;(2)若時(shí),對(duì)任意都有恒成立,求實(shí)數(shù)的最大值19.(12分)如圖,四棱錐中,底面是邊長(zhǎng)為2的正方形,,,且,為的中點(diǎn)(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點(diǎn),使得點(diǎn)到平面的距離為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由20.(12分)在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個(gè)法向量.21.(12分)已知各項(xiàng)均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(xiàng)(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和22.(10分)如圖,在正三棱柱中,,,,分別為,,的中點(diǎn)(1)證明:(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據(jù)離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C2、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.3、C【解析】由空間中關(guān)于坐標(biāo)軸對(duì)稱點(diǎn)坐標(biāo)的特征可直接得到結(jié)果.【詳解】關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)不變,坐標(biāo)變?yōu)橄喾磾?shù),關(guān)于軸對(duì)稱的點(diǎn)為.故選:C.4、A【解析】運(yùn)用兩直線平行的充要條件得出l1與l2平行時(shí)a的值,而后運(yùn)用充分必要條件的知識(shí)來解決即可解:∵當(dāng)a=1時(shí),直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當(dāng)兩條直線平行時(shí),得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點(diǎn):必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關(guān)系5、D【解析】直接根據(jù)拋物線焦點(diǎn)弦長(zhǎng)公式以及中點(diǎn)坐標(biāo)公式求結(jié)果【詳解】設(shè),,則的中點(diǎn)到軸的距離為,則故選:D6、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長(zhǎng)為4,虛半軸長(zhǎng)為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.7、D【解析】由已知條件推導(dǎo)出,.由此利用裂項(xiàng)求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點(diǎn)睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題8、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A9、B【解析】寫出每次循環(huán)的結(jié)果,即可得到答案.【詳解】當(dāng)時(shí),,,,;,此時(shí),退出循環(huán),輸出的的為.故選:B【點(diǎn)睛】本題考查程序框圖的應(yīng)用,此類題要注意何時(shí)循環(huán)結(jié)束,建議數(shù)據(jù)不大時(shí)采用寫出來的辦法,是一道容易題.10、A【解析】由絕對(duì)值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結(jié)的命題只有當(dāng)兩命題都真時(shí)才是真命題,所以答案選A11、C【解析】在,上分別取點(diǎn),,使得,連接,,,把幾何體分割成一個(gè)三棱柱和一個(gè)四棱錐,然后由棱柱、棱錐體積公式計(jì)算【詳解】如圖,在,上分別取點(diǎn),,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點(diǎn)睛】思路點(diǎn)睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計(jì)算轉(zhuǎn)化為錐體、柱體體積的計(jì)算.考查了空間想象能力、邏輯思維能力、運(yùn)算求解能力12、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對(duì)應(yīng)的即可.【詳解】由題意知,因?yàn)?,若為奇?shù)時(shí),,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時(shí),,可得,符合題意.不符合故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義由焦點(diǎn)坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因?yàn)殡p曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:14、【解析】根據(jù)橢圓定義求出其長(zhǎng)半軸長(zhǎng),再結(jié)合焦點(diǎn)坐標(biāo)即可計(jì)算作答.【詳解】因橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和等于,則該橢圓長(zhǎng)半軸長(zhǎng),而半焦距,于是得短半軸長(zhǎng)b,有,所以的標(biāo)準(zhǔn)方程為.故答案為:15、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長(zhǎng)為考點(diǎn):1.圓的方程;2.直線被圓截得的弦長(zhǎng)的求法;16、【解析】如圖,設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,利用在直角三角形中,求得,從而得出直線的斜率【詳解】解:如圖,當(dāng)在第一象限時(shí),設(shè),兩點(diǎn)的拋物線的準(zhǔn)線上的射影分別為,,過作的垂線,在三角形中,等于直線的傾斜角,其正切值即為值,由拋物線的定義可知:設(shè),則,,,在直角三角形中,,所以,則直線的斜率;當(dāng)在第四象限時(shí),同理可得,直線的斜率,綜上可得直線l的斜率為;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、或【解析】首先根據(jù)復(fù)數(shù)的乘方及復(fù)數(shù)模的計(jì)算公式求出命題為真時(shí)參數(shù)的取值范圍,再根據(jù)橢圓的性質(zhì)求出命題為真時(shí)參數(shù)的取值范圍,依題意為假,為真,即可求出參數(shù)的取值范圍;【詳解】解:因?yàn)?,,,,所以,所以,所以為真時(shí),因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,所以,所以,即為真時(shí),所以為假時(shí)參數(shù)的取值范圍為或,因?yàn)槊}為真,命題或?yàn)檎?,所以為假,為真,?8、(1)答案見解析;(2).【解析】(1)利用導(dǎo)數(shù)與單調(diào)性的關(guān)系分類討論即得;(2)由題可得在上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域?yàn)?,且?dāng)時(shí),顯然,在定義域上單調(diào)遞增;當(dāng)時(shí),令,得則有:極大值即在上單調(diào)遞增,在上單調(diào)遞減,綜上所述,當(dāng)時(shí),在定義域上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減.【小問2詳解】當(dāng)時(shí),,對(duì)于滿足恒成立,在上恒成立,令,只需∴,,,令,則,在上單調(diào)遞增,又,,存在唯一的,使得,即,兩邊取自然對(duì)數(shù)得,極小值,則的最大值為19、(1)(2)存在,點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點(diǎn),求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因?yàn)樗倪呅螢檎叫危瑒t,,由,,,所以平面,因?yàn)槠矫?,所以,又由,,,所以平面,又因?yàn)槠矫?,所以,因?yàn)榍移矫?,所以平面,由平面,且,不妨以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點(diǎn),可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點(diǎn)到平面的距離為,解得,即或因?yàn)椋怨十?dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),點(diǎn)到平面的距離為.20、【解析】建立空間直角坐標(biāo)系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標(biāo)系,則設(shè)平面ACD1的法向量.,又為平面ACD1的一個(gè)法向量,化簡(jiǎn)得令x=1,得y=z=1.平面ACD1的一個(gè)法向量.【點(diǎn)睛】本題主要考查了求平面的法向量,屬于中檔題.21、(1);(2)【解析】(1)設(shè)等差數(shù)列公差為d,利用基本量代換列方程組求出的通項(xiàng)公式,進(jìn)而求出的首項(xiàng)和公比,即可求出的通項(xiàng)公式;(2)利用分組求和法直接求和.【小問1詳解】設(shè)等差數(shù)列的公差為d,則由已知得:,即,又,解得或(舍去),所以.,又,,,;【小問2詳解】,.22、(1)證明見解析(2)【解析】(1)由已知,以為坐標(biāo)原點(diǎn),建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人租賃房屋維修保養(yǎng)合同樣本5篇
- 二零二五版路燈照明設(shè)施維護(hù)保養(yǎng)服務(wù)合同4篇
- 2025版綿陽(yáng)老城區(qū)古建筑修復(fù)工程合同4篇
- 二零二五年度智能門窗系統(tǒng)集成與維護(hù)服務(wù)合同樣本4篇
- 2025年度出租車租賃與乘客安全保障協(xié)議4篇
- 2025年度電動(dòng)汽車充電樁項(xiàng)目設(shè)備供應(yīng)合同書4篇
- 2025年度森林生態(tài)系統(tǒng)樹木種植保護(hù)合同4篇
- 二零二五年新型城鎮(zhèn)化項(xiàng)目渣土運(yùn)輸管理協(xié)議3篇
- 2025年文化旅游產(chǎn)業(yè)委托擔(dān)保借款合同3篇
- 2025年度超聲刀醫(yī)療設(shè)備銷售及用戶滿意度提升協(xié)議4篇
- DB33T 2570-2023 營(yíng)商環(huán)境無感監(jiān)測(cè)規(guī)范 指標(biāo)體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報(bào)
- 垃圾車駕駛員聘用合同
- 2025年道路運(yùn)輸企業(yè)客運(yùn)駕駛員安全教育培訓(xùn)計(jì)劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機(jī)床維護(hù)保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國(guó)家安全員資格考試題庫(kù)加解析答案
- 通信工程建設(shè)標(biāo)準(zhǔn)強(qiáng)制性條文匯編(2023版)-定額質(zhì)監(jiān)中心
評(píng)論
0/150
提交評(píng)論