2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆四川省成都航天中學(xué)校高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)m,n是兩條不同直線,,是兩個不同平面,則下列說法錯誤的是()A.若,,則; B.若,,則;C.若,,則; D.若,,則2.設(shè)是橢圓的兩個焦點,是橢圓上一點,且.則的面積為()A.6 B.C.8 D.3.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.4.不等式解集為()A. B.C. D.5.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.6.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.8.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④9.在中,若,則()A.150° B.120°C.60° D.30°10.已知數(shù)列中,其前項和為,且滿足,數(shù)列的前項和為,若對恒成立,則實數(shù)的值可以是()A. B.2C.3 D.11.直線,若的傾斜角為60°,則的斜率為()A. B.C. D.12.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線平行,則實數(shù)m的值為____________14.已知數(shù)列滿足,,若為等差數(shù)列,則___________,若,則數(shù)列的前項和為___________.15.下列說法中,正確的有_________(填序號).①“”是“方程表示橢圓”的必要而不充分條件;②若:,則:;③“,”的否定是“,”;④若命題“”為假命題,則命題一定是假命題;⑤是直線:和直線:垂直的充要條件.16.等比數(shù)列的前項和為,則的值為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C1:的左、右焦點分別為,且橢圓C1與拋物線C2:y2=2px(p>0)在第一象限的交點為Q,已知.(1)求的面積(2)求拋物線C2的標(biāo)準(zhǔn)方程.18.(12分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項公式;(2)令,若,求滿足條件的最大整數(shù)n.19.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F(xiàn)2,且|F1F2|=,橢圓的長半軸長與雙曲線半實軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點,求△F1PF2的面積20.(12分)已知橢圓,點在上,,且(1)求出直線所過定點的坐標(biāo);(不需要證明)(2)過A點作的垂線,垂足為,是否存在點,使得為定值?若存在,求出的值;若不存在,說明理由.21.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.22.(10分)如圖,在四棱錐中,,,,,為中點,且平面.(1)求點到平面的距離;(2)線段上是否存在一點,使平面?如果不存在,請說明理由;如果存在,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】直接由直線平面的定理得到選項正確;對于選項,m,n可能平行、相交或異面,所以該選項錯誤;對于選項,與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.【詳解】對于選項,若,,則,所以該選項正確;對于選項,若,,則,所以該選項正確;對于選項,若,,則m,n可能平行、相交或異面,所以該選項錯誤;對于選項,若,,則與內(nèi)一直線l,所以,因為l為內(nèi)一直線,所以.所以該選項正確.故選:C【點睛】本題主要考查空間直線平面位置關(guān)系判斷,意在考查學(xué)生對這些知識的理解掌握水平.2、B【解析】利用橢圓的幾何性質(zhì),得到,,進(jìn)而利用得出,進(jìn)而可求出【詳解】解:由橢圓的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因為,,所以,所以,故選:B3、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點,準(zhǔn)線為過點作準(zhǔn)線于點,故△PAF的周長為,,可知當(dāng)三點共線時周長最小,為故選:C4、C【解析】化簡一元二次不等式的標(biāo)準(zhǔn)形式并求出解集即可.【詳解】不等式整理得,解得或,則不等式解集為.故選:.5、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B6、B【解析】因但7、C【解析】先根據(jù)垂直關(guān)系設(shè)切線方程,再根據(jù)圓心到切線距離等于半徑列式解得結(jié)果.【詳解】因為切線與直線平行,所以切線方程可設(shè)為因為切線過點P(2,2),所以因為與圓相切,所以故選:C8、D【解析】當(dāng)點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導(dǎo)出矛盾判斷②;利用線面角的定義轉(zhuǎn)化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當(dāng)點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設(shè)是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當(dāng)P與E不重合時,,,而,則,當(dāng)P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結(jié)論點睛:兩個平面互相垂直,則一個平面內(nèi)任意一點在另一個平面上的射影都在這兩個平面的交線上.9、C【解析】根據(jù)正弦定理將化為邊之間的關(guān)系,再結(jié)合余弦定理可得答案.【詳解】若,則根據(jù)正弦定理得:,即,而,故,故選:C.10、D【解析】由求出,從而可以求,再根據(jù)已知條件不等式恒成立,可以進(jìn)行適當(dāng)放大即可.【詳解】若n=1,則,故;若,則由得,故,所以,,又因為對恒成立,當(dāng)時,則恒成立,當(dāng)時,,所以,,,若n為奇數(shù),則;若n為偶數(shù),則,所以所以,對恒成立,必須滿足.故選:D11、D【解析】直線,斜率乘積為,斜線斜率等于傾斜角的正切值.【詳解】,,所以.故選:D.12、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:14、①.##②.【解析】利用遞推關(guān)系式,結(jié)合等差數(shù)列通項公式可求得公差,進(jìn)而得到;利用遞推關(guān)系式可知數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,采用裂項相消的方法可求得前項和.【詳解】由得:,解得:;為等差數(shù)列,設(shè)其公差為,則,解得:,;由知:數(shù)列的奇數(shù)項是以為首項,為公差的等差數(shù)列;偶數(shù)項是以為首項,為公差的等差數(shù)列;,又,,數(shù)列的前項和,.故答案為:;.【點睛】關(guān)鍵點點睛:本題考查根據(jù)數(shù)列遞推關(guān)系求解數(shù)列中的項、裂項相消法求和的問題;解題關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到數(shù)列的奇數(shù)項和偶數(shù)項分別成等差數(shù)列,由此可通過裂項相消的方法求得所求數(shù)列的和.15、①【解析】根據(jù)橢圓方程的結(jié)構(gòu)特征可判斷①;注意到分式不等式分母不等于0可判斷②;由全稱命題的否定可判斷③;根據(jù)復(fù)合命題的真假可判斷④;由直線垂直的充要條件可判斷⑤.【詳解】①中,當(dāng)時,方程為,表示圓,若方程表示橢圓,則,解得或,故①正確;②中,,故為:,而,故②不正確;③中,“,”的否定應(yīng)為“,”,故③不正確;④中,若命題“”為假命題,有可能為真或為假,故④不正確;⑤中,,解得或,故是直線:和直線:垂直的充分不必要條件,故⑤不正確.故答案為:①16、【解析】根據(jù)等比數(shù)列前項和公式的特點列方程,解方程求得的值.【詳解】由于等比數(shù)列前項和,本題中,故.故填:.【點睛】本小題主要考查等比數(shù)列前項和公式的特點,考查觀察與思考的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè),由橢圓的定義可得,結(jié)合余弦定理可得出的值,從而可得面積.(2)設(shè),根據(jù)的面積結(jié)合橢圓的方程求出點的坐標(biāo),代入拋物線可得答案.【小問1詳解】由橢圓方程知a=2,b=1,,設(shè),則即,求得所以的面積為【小問2詳解】設(shè)由(1)中,得又,,所以代入拋物線方程得,所以所以拋物線的標(biāo)準(zhǔn)方程為18、(1)(2)【解析】(1)由等比數(shù)列的性質(zhì)可得,結(jié)合條件求出,得出公比,從而得出通項公式.(2)由(1)可得,再求出的前項和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調(diào)遞增,所以滿足條件的的最大整數(shù)為19、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據(jù)半焦距,設(shè)橢圓長半軸為a,由離心率之比求出a,進(jìn)而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標(biāo)準(zhǔn)方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進(jìn)一步求得sin∠的值,代入面積公式得答案試題解析:(1)設(shè)橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設(shè)F1,F(xiàn)2分別為左、右焦點,P是第一象限的一個交點,則PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=PF1·PF2sin∠F1PF2=·10·4·=12考點:橢圓雙曲線方程及性質(zhì)20、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理列出方程,求出定點坐標(biāo),當(dāng)斜率不存在時,設(shè)出點的坐標(biāo)進(jìn)行求解;(2)結(jié)合第一問的定點坐標(biāo),結(jié)合直角三角形斜邊中線得到存在點,使得為定值,求出結(jié)果.【小問1詳解】設(shè)點,若直線斜率存在時,設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,因為,所以,即,根據(jù),代入整理可得:,所以,整理化簡得:,因為不在直線上,所以,故,于是的方程為,所以直線過定點直線過定點.當(dāng)直線的斜率不存在時,可得,由得:,得,結(jié)合可得:,解得:或(舍).此時直線過點【小問2詳解】由(1)可知因為,取中點,則此時,【點睛】直線過定點問題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時,設(shè)出直線為,聯(lián)立后用韋達(dá)定理得到兩根之和與兩根之積,結(jié)合題干條件得到等量關(guān)系,求出的關(guān)系,進(jìn)而得到定點坐標(biāo).21、(1)證明見解析(2)【解析】(1)取的中點F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向為軸,求出對應(yīng)點坐標(biāo),結(jié)合二面角夾角余弦公式即可求解.【小問1詳解】取的中點F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;【小問2詳解】取AC的中點O,以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,,,∴,.設(shè)平面的法向量是,則,即,令,得,易知平面的一個法向量是,∴,又二面角是鈍二面角,∴二面角的余弦值為.22、(1)(2)線段上存在一點,當(dāng)時,平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論