2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣東省廣州中科高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.212.已知函數(shù)滿足對于恒成立,設(shè)則下列不等關(guān)系正確是()A. B.C. D.3.若圓C:上有到的距離為1的點,則實數(shù)m的取值范圍為()A. B.C. D.4.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實數(shù),使”的否定是“不存在實數(shù),使”D.若且,則,至少有一個大于5.已知直線與直線垂直,則()A. B.C. D.6.圓與直線的位置關(guān)系是()A.相交 B.相切C.相離 D.不能確定7.設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是A.函數(shù)有極大值和極小值B.函數(shù)有極大值和極小值C.函數(shù)有極大值和極小值D.函數(shù)有極大值和極小值8.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.9.若直線被圓截得的弦長為,則的最小值為()A. B.C. D.10.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.11.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值12.已知點,,直線與線段相交,則實數(shù)的取值范圍是()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.桌面排列著100個乒乓球,兩個人輪流拿球裝入口袋,能拿到第100個乒乓球人為勝利者.條件是:每次拿走球的個數(shù)至少要拿1個,但最多又不能超過5個,這個游戲中,先手是有必勝策略的,請問:如果你是最先拿球的人,為了保證最后贏得這個游戲,你第一次該拿走___個球14.若在上是減函數(shù),則實數(shù)a的取值范圍是_________.15.的展開式中的系數(shù)為_________16.已知函數(shù),則曲線在點處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,().(1)證明:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)數(shù)列滿足:(),求數(shù)列的前項和.18.(12分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)已知橢圓:,是坐標原點,,分別為橢圓的左、右焦點,點在橢圓上,過作的外角的平分線的垂線,垂足為,且(1)求橢圓方程:(2)設(shè)直線:與橢圓交于,兩點,且直線,,的斜率之和為0(其中為坐標原點)①求證:直線經(jīng)過定點,并求出定點坐標:②求面積的最大值20.(12分)在數(shù)列中,,,且對任意的,都有.(1)數(shù)列的通項公式;(2)設(shè)數(shù)列,求數(shù)列的前項和.21.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標為-1,求直線l的方程22.(10分)已知圓,直線.(1)當(dāng)為何值時,直線與圓相切;(2)當(dāng)直線與圓相交于、兩點,且時,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)給出的循環(huán)程序進行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D2、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項的對錯.【詳解】設(shè),則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯,令(),則,當(dāng)時,,當(dāng)時,∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯,,故,所以,A對,,故,所以,B錯,故選:A.3、C【解析】利用圓與圓的位置關(guān)系進行求解即可.【詳解】將圓C的方程化為標準方程得,所以.因為圓C上有到的距離為1的點,所以圓C與圓:有公共點,所以因為,所以,解得,故選:C4、C【解析】利用簡易邏輯的知識逐一判斷即可.【詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實數(shù),使”的否定是“對任意的實數(shù)都有”,故C錯誤;假設(shè)且,則,與矛盾,故D正確;故選:C5、C【解析】根據(jù)兩直線垂直可直接構(gòu)造方程求得結(jié)果.【詳解】由兩直線垂直得:,解得:.故選:C.6、B【解析】用圓心到直線的距離與半徑的大小判斷【詳解】解:圓的圓心到直線的距離,等于圓的半徑,所以圓與直線相切,故選:B7、D【解析】則函數(shù)增;則函數(shù)減;則函數(shù)減;則函數(shù)增;選D.【考點定位】判斷函數(shù)的單調(diào)性一般利用導(dǎo)函數(shù)的符號,當(dāng)導(dǎo)函數(shù)大于0則函數(shù)遞增,當(dāng)導(dǎo)函數(shù)小于0則函數(shù)遞減8、A【解析】.本題選擇A選項.9、D【解析】先根據(jù)已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標準方程為,圓心為,半徑為,若直線被截得弦長為,說明圓心在直線:上,即,即,∴,當(dāng)且僅當(dāng),即時,等號成立故選:D.【點睛】本題主要考查利用基本不等式求最值,本題關(guān)鍵是求出,屬常規(guī)考題.10、B【解析】求出,進而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長恰等于實軸的長,,,故選:B11、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C12、B【解析】由可求出直線過定點,作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數(shù)的取值范圍是或,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)題意,由游戲規(guī)則,結(jié)合余數(shù)的性質(zhì),分析可得答案【詳解】解:根據(jù)題意,第一次該拿走4個球,以后的取球過程中,對方取個,自己取個,由于,則自己一定可以取到第100個球.故答案為:414、【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合常變量分離法進行求解即可.【詳解】,因為在上是減函數(shù),所以在上恒成立,即,當(dāng)時,的最小值為,所以,故答案為:15、4【解析】將代數(shù)式變形為,寫出展開式的通項,令的指數(shù)為,求得參數(shù)的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數(shù)為.由展開式的通項為,令,得展開式中的系數(shù)為.所以的展開式中的系數(shù)為.故答案為:.16、【解析】對函數(shù)求導(dǎo),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導(dǎo)數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)將給定等式變形,計算即可判斷數(shù)列類型,再求出其通項而得解;(2)利用(1)的結(jié)論求出數(shù)列的通項,然后利用錯位相減法求解即得.【詳解】(1)因數(shù)列滿足,,則,而,于是數(shù)列是首項為1,公比為2的等比數(shù)列,,即,所以數(shù)列是等比數(shù)列,,;(2)由(1)知,則于是得,,所以數(shù)列的前項和.18、(1)(2)【解析】(1)由,且成等比數(shù)列列式求解出和,然后寫出;(2)由,用錯位相減法求和即可.【詳解】(1)∵,∴①又∵成等比數(shù)列,∴,②∵,由①②解得:,,∴(2)∵,,∴兩式相減,得∴【點睛】本題考查了等差數(shù)列基本量的計算,錯位相減法求和,屬于中檔題.19、(1);(2)①證明見解析,;②.【解析】(1)根據(jù)橢圓的定義以及角平分線的性質(zhì)可得,,結(jié)合點在橢圓上,以及即可求出的值,進而可得橢圓的方程.(2)①設(shè),,聯(lián)立直線與橢圓方程,求得,,利用斜率之和等于得出關(guān)于的方程,解得即可得所過的定點,②由弦長公式求出,點到直線的距離公式求得高,由面積公式表示三角形的面積,利用基本不等式即可求最值.【詳解】(1)如圖,由題意可知,由橢圓定義知,則,連接,所以,所以又在橢圓上則,解得:,,所以橢圓的方程為:;(2)①證明:設(shè),,聯(lián)立,整理可得:,所以,可得,,,設(shè)直線,,的斜率為,,,因為直線,,的斜率之和為0,所以,即所以,由,所以,所以直線恒過定點;②由①可得:,原點到直線的距離,所以,因為,當(dāng)且僅當(dāng)時,即,即時取等號,所以,即面積的最大值為1【點睛】解決圓錐曲線中的范圍或最值問題時,若題目的條件和結(jié)論能體現(xiàn)出明確的函數(shù)關(guān)系,則可先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下幾個方面考慮:20、(1);(2).【解析】(1)由遞推式可得,根據(jù)等比數(shù)列的定義寫出通項公式,再由累加法求的通項公式;(2)由(1)可得,再應(yīng)用裂項相消法求前項和【小問1詳解】由可得:,又,,∴,則數(shù)列是首項為2,公比為2的等比數(shù)列,∴.∴.【小問2詳解】∵,∴∴.21、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標為-1,∴,即,得,∴直線l的方程為.【點睛】關(guān)鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標值,應(yīng)用韋達定理、中點公式求直線斜率,并寫出直線方程.22、(1);(2)或.【解析】(1)將圓的方程表示為標準方程,確定圓心坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論