四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四平市重點中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.魏晉時期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.2.命題:“,”的否定形式為()A., B.,C., D.,3.已知等比數(shù)列的各項均為正數(shù),且,則()A. B.C. D.4.?dāng)?shù)列,,,,…,是其第()項A.17 B.18C.19 D.205.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點D.曲線在處切線的斜率小于零6.在長方體中,若,,則異而直線與所成角的余弦值為()A. B.C. D.7.已知,則的大小關(guān)系為()A. B.C. D.8.下列命題正確的是()A經(jīng)過三點確定一個平面B.經(jīng)過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面9.已知命題p:函數(shù)在(0,1)內(nèi)恰有一個零點;命題q:函數(shù)在上是減函數(shù),若p且為真命題,則實數(shù)的取值范圍是A. B.2C.1<≤2 D.≤l或>210.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確11.在中,角A,B,C所對的邊分別為a,b,c,已知,則的面積為()A. B.C. D.12.下列說法中正確的是A.命題“若,則”的逆命題為真命題B.若為假命題,則均為假命題C.若為假命題,則為真命題D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有且僅有兩個不同的零點,則實數(shù)的取值范圍是__________.14.若經(jīng)過點且斜率為1的直線與拋物線交于,兩點,則______.15.若,且,則的最小值是____________.16.已知函數(shù),若在上是增函數(shù),則實數(shù)的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離18.(12分)如圖,在長方體中,底面是正方形,O是的中點,(1)證明:(2)求直線與平面所成角的正弦值19.(12分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項公式;(2)令,若,求滿足條件的最大整數(shù)n.20.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.21.(12分)已知數(shù)列的前項和為,若.(1)求的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知動點M到點F(0,)的距離與它到直線的距離相等(1)求動點M的軌跡C的方程;(2)過點P(,-1)作C的兩條切線PA,PB,切點分別為A,B,求直線AB的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關(guān)鍵點點睛:設(shè)是解題關(guān)鍵.2、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.3、B【解析】利用對數(shù)的運算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項均為正數(shù)的等比數(shù)列,,,,.故選:B4、D【解析】根據(jù)題意,分析歸納可得該數(shù)列可以寫成,,,……,,可得該數(shù)列的通項公式,分析可得答案.【詳解】解:根據(jù)題意,數(shù)列,,,,…,,可寫成,,,……,,對于,即,為該數(shù)列的第20項;故選:D.【點睛】此題考查了由數(shù)列的項歸納出數(shù)列的通項公式,考查歸納能力,屬于基礎(chǔ)題.5、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點,即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)或時,則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點與最小值點,因為,所以曲線在處切線的斜率大于零,故選:B6、C【解析】通過平移把異面直線平移到同一平面中,所以取,的中點,易知且過中心點,所以異而直線與所成角為和所成角,通過解三角形即可得解.【詳解】根據(jù)長方體的對稱性可得體對角線過中心點,取,的中點,易知且過中心點,所以異而直線和所成角為和所成角,連接,在中,,,,所以則異而直線與所成角的余弦值為:,故選:C.7、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B8、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D9、C【解析】命題p為真時:;命題q為真時:,因為p且為真命題,所以命題p為真,命題q為假,即,選C考點:命題真假10、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.11、A【解析】由余弦定理計算求得角,根據(jù)三角形面積公式計算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A12、D【解析】A中,利用四種命題的的真假判斷即可;B、C中,命題“”為假命題時,、至少有一個為假命題;D中,寫出該命題的否命題,再判斷它的真假性【詳解】對于A,命題“若,則”的逆命題是:若,則;因為也成立.所以A不正確;對于B,命題“”為假命題時,、至少有一個為假命題,所以B錯誤;C錯誤;對于D,“平面向量滿足”,則不共線的否命題是,若“平面向量滿足”,則共線;由知:,一定有,,所以共線,D正確.故選:D.【點睛】本題考查了命題的真假性判斷問題,也考查了推理與判斷能力,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】函數(shù)有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當(dāng)時,,單調(diào)遞減,當(dāng)時,,單調(diào)遞增,∴當(dāng)時,,作出函數(shù)與的圖象,∴當(dāng)時,y=a與g(x)有兩個交點﹒故答案為:﹒14、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達(dá)定理,由弦長公式可得答案.【詳解】設(shè),則直線的方程為由,得所以所以故答案為:15、【解析】應(yīng)用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當(dāng)且僅當(dāng),且,即時等號成立,∴最小值為.故答案為:16、【解析】根據(jù)函數(shù)在上是增函數(shù),分段函數(shù)在整個定義域內(nèi)單調(diào),則在每個函數(shù)內(nèi)單調(diào),注意銜接點的函數(shù)值.【詳解】解:因為函數(shù)在上是增函數(shù),所以在區(qū)間上是增函數(shù)且在區(qū)間上也是增函數(shù),對于函數(shù)在上是增函數(shù),則;①對于函數(shù),(1)當(dāng)時,,外函數(shù)為定義域內(nèi)的減函數(shù),內(nèi)函數(shù)在上是增函數(shù),根據(jù)復(fù)合函數(shù)“同增異減”可得時函數(shù)在區(qū)間上是減函數(shù),不符合題意,故舍去,(2)當(dāng)時,外函數(shù)為定義域內(nèi)的增函數(shù),要使函數(shù)在區(qū)間上是增函數(shù),則內(nèi)函數(shù)在上也是增函數(shù),且對數(shù)函數(shù)真數(shù)大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數(shù)則在銜接點處函數(shù)值應(yīng)滿足:,化簡得,③由①②③得,,所以實數(shù)的取值范圍是.故答案為:.【點睛】方法點睛:利用單調(diào)性求參數(shù)方法如下:(1)依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較;(2)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;(3)分段函數(shù)的單調(diào)性,除注意各段的單調(diào)性外,還要注意銜接點的取值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質(zhì)可證得結(jié)論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設(shè)點到平面的距離為,,,解得.因此,點到平面距離為.18、(1)證明見解析(2)【解析】(1)以A為坐標(biāo)原點,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,令,可得的坐標(biāo),再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標(biāo),由線面角的向量求法可得答案.【小問1詳解】在長方體中,以A為坐標(biāo)原點,的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系不妨令,則,,因為,所以【小問2詳解】由(1)可知,,,設(shè)平面的法向量,則令,得,設(shè)直線與平面所成的角,則.19、(1)(2)【解析】(1)由等比數(shù)列的性質(zhì)可得,結(jié)合條件求出,得出公比,從而得出通項公式.(2)由(1)可得,再求出的前項和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調(diào)遞增,所以滿足條件的的最大整數(shù)為20、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當(dāng)時,在上恒成立,所以此時在上為增函數(shù),當(dāng)時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時,在上為增函數(shù),當(dāng)時,在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當(dāng)時,在上為增函數(shù),無最小值.當(dāng)時,在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.21、(1)(2)【解析】(1)根據(jù)所給條件先求出首項,然后仿寫,作差即可得到的通項公式;(2)根據(jù)(1)求出的通項公式,觀察是由一個等差數(shù)列加上一個等比數(shù)列得到,要求其前項和,采用分組求和法結(jié)合公式法可求出前項和【小問1詳解】當(dāng)時,,解得;當(dāng)時,,∴,化簡得,∴是首項為1,公比為2的等比數(shù)列,∴,因此的通項公式為.【小問2詳解】由(1)得,∴,∴,∴22、(1)(2)【解析】(1)根據(jù)拋物線的定義或者直接列式化簡即可求出;(2)方法一:設(shè)切線的方程為:,與拋物線方程聯(lián)立,由即可求出的值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論