版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE圓的方程[考試要求]1.駕馭確定圓的幾何要素,駕馭圓的標(biāo)準(zhǔn)方程與一般方程.2.初步了解用代數(shù)方法處理幾何問(wèn)題的思想.1.圓的定義及方程定義平面內(nèi)與定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合(軌跡)標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2(r>0)圓心(a,b),半徑r一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F圓心eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),半徑eq\f(1,2)eq\r(D2+E2-4F)提示:當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0表示一個(gè)點(diǎn)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)));當(dāng)D2+E2-4F<0時(shí),方程x2+y2+Dx+Ey+F=0沒(méi)有意義,不表示任何圖形.2.點(diǎn)與圓的位置關(guān)系點(diǎn)M(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系:(1)若M(x0,y0)在圓外,則(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圓上,則(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圓內(nèi),則(x0-a)2+(y0-b)2<r2.eq\a\vs4\al([常用結(jié)論])1.圓的三特性質(zhì)(1)圓心在過(guò)切點(diǎn)且垂直于切線的直線上;(2)圓心在任一弦的中垂線上;(3)兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線.2.以A(x1,y1),B(x2,y2)為直徑端點(diǎn)的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0.一、易錯(cuò)易誤辨析(正確的打“√”,錯(cuò)誤的打“×”)(1)確定圓的幾何要素是圓心與半徑.()(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圓心為(a,b),半徑為t的一個(gè)圓.()(3)方程x2+y2+4mx-2y=0不肯定表示圓.()(4)若點(diǎn)M(x0,y0)在圓x2+y2+Dx+Ey+F=0外,則xeq\o\al(2,0)+yeq\o\al(2,0)+Dx0+Ey0+F>0.()[答案](1)√(2)×(3)×(4)√二、教材習(xí)題衍生1.圓x2+y2-4x+6y=0的圓心坐標(biāo)和半徑分別是()A.(2,3),3 B.(-2,3),eq\r(3)C.(-2,-3),13 D.(2,-3),eq\r(13)D[圓的方程可化為(x-2)2+(y+3)2=13,所以圓心坐標(biāo)是(2,-3),半徑r=eq\r(13).]2.已知點(diǎn)A(1,-1),B(-1,1),則以線段AB為直徑的圓的方程是()A.x2+y2=2 B.x2+y2=eq\r(2)C.x2+y2=1 D.x2+y2=4A[AB的中點(diǎn)坐標(biāo)為(0,0),|AB|=eq\r([1--1]2+-1-12)=2eq\r(2),所以圓的方程為x2+y2=2.]3.過(guò)點(diǎn)A(1,-1),B(-1,1),且圓心在直線x+y-2=0上的圓的方程是()A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4C[設(shè)圓心C的坐標(biāo)為(a,b),半徑為r.因?yàn)閳A心C在直線x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程為(x-1)2+(y-1)2=4.]4.在平面直角坐標(biāo)系中,經(jīng)過(guò)三點(diǎn)(0,0),(1,1),(2,0)的圓的方程為_(kāi)_______.x2+y2-2x=0[設(shè)圓的方程為x2+y2+Dx+Ey+F=0.∵圓經(jīng)過(guò)點(diǎn)(0,0),(1,1),(2,0),∴eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,2+D+E+F=0,,4+2D+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=0,,F=0.))∴圓的方程為x2+y2-2x=0.]考點(diǎn)一圓的方程求圓的方程的兩種方法1.若不同的四點(diǎn)A(5,0),B(-1,0),C(-3,3),D(a,3)共圓,則a的值為_(kāi)_______.7[設(shè)圓的方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0),分別代入A,B,Ceq\b\lc\{\rc\(\a\vs4\al\co1(25+5D+F=0,,1-D+F=0,,9+9-3D+3E+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-4,,E=-\f(25,3),,F=-5.))所以A,B,C三點(diǎn)確定的圓的方程為x2+y2-4x-eq\f(25,3)y-5=0.因?yàn)镈(a,3)也在此圓上,所以a2+9-4a-25-5=0.所以a=7或a=-3(舍去).即a的值為7.]2.(2024·包頭青山區(qū)模擬)已知圓C過(guò)點(diǎn)A(6,0),B(1,5),且圓心在直線l:2x-7y+8=0上,則圓C的方程為_(kāi)_______.(x-3)2+(y-2)2=13[法一:(幾何法)kAB=eq\f(5-0,1-6)=-1,則AB的垂直平分線方程為y-eq\f(5,2)=x-eq\f(7,2),即x-y-1=0,聯(lián)立方程eq\b\lc\{\rc\(\a\vs4\al\co1(x-y-1=0,,2x-7y+8=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x=3,,y=2,))r=eq\r(6-32+0-22)=eq\r(13),故圓C的方程為(x-3)2+(y-2)2=13.法二:(待定系數(shù)法)設(shè)所求圓的方程為(x-a)2+(y-b)2=r2.由題意可得eq\b\lc\{\rc\(\a\vs4\al\co1(6-a2+0-b2=r2,,1-a2+5-b2=r2,,2a-7b+8=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=3,,b=2,,r2=13,))故所求圓C的方程為(x-3)2+(y-2)2=13.]3.已知圓C的圓心在直線x+y=0上,圓C與直線x-y=0相切,且在直線x-y-3=0上截得的弦長(zhǎng)為eq\r(6),則圓C的方程為_(kāi)_______.(x-1)2+(y+1)2=2[法一:由圓C的圓心在直線x+y=0上,∴設(shè)圓C的圓心為(a,-a).又∵圓C與直線x-y=0相切,∴半徑r=eq\f(2|a|,\r(2))=eq\r(2)|a|.又圓C在直線x-y-3=0上截得的弦長(zhǎng)為eq\r(6),圓心(a,-a)到直線x-y-3=0的距離d=eq\f(|2a-3|,\r(2)),∴d2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))2=r2,即eq\f(2a-32,2)+eq\f(3,2)=2a2,解得a=1,∴圓C的方程為(x-1)2+(y+1)2=2.法二:設(shè)所求圓的方程為x2+y2+Dx+Ey+F=0,則圓心為eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),半徑r=eq\f(1,2)eq\r(D2+E2-4F),∵圓心在直線x+y=0上,∴-eq\f(D,2)-eq\f(E,2)=0,即D+E=0,①又∵圓C與直線x-y=0相切,∴eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(-\f(D,2)+\f(E,2))),\r(2))=eq\f(1,2)eq\r(D2+E2-4F),即(D-E)2=2(D2+E2-4F),∴D2+E2+2DE-8F=0.②又知圓心eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))到直線x-y-3=0的距離d=eq\f(\b\lc\|\rc\|(\a\vs4\al\co1(-\f(D,2)+\f(E,2)-3)),\r(2)),由已知得d2+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),2)))2=r2,∴(D-E+6)2+12=2(D2+E2-4F),③聯(lián)立①②③,解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=2,,F=0,))故所求圓的方程為x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.]4.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a(-2,-4)5[由已知方程表示圓,則a2=a+2,解得a=2或a=-1.當(dāng)a=2時(shí),方程不滿意表示圓的條件,故舍去.當(dāng)a=-1時(shí),原方程為x2+y2+4x+8y-5=0,化為標(biāo)準(zhǔn)方程為(x+2)2+(y+4)2=25,表示以(-2,-4)為圓心,半徑為5的圓.]點(diǎn)評(píng):(1)幾何法的關(guān)鍵是定圓心.(2)已知圓心位置常設(shè)圓的標(biāo)準(zhǔn)形式,已知圓上三點(diǎn)常設(shè)圓的一般式.(3)涉及圓的弦長(zhǎng)問(wèn)題,一般是利用半弦長(zhǎng)、弦心距和半徑構(gòu)成直角三角形求解.(4)方程Ax2+By2+Cxy+Dx+Ey+F=0表示圓的充要條件為A=B>0,C=0,D2+E2-4AF>0.考點(diǎn)二與圓有關(guān)的最值問(wèn)題與圓有關(guān)的最值問(wèn)題的三種幾何轉(zhuǎn)化法(1)形如μ=eq\f(y-b,x-a)形式的最值問(wèn)題可轉(zhuǎn)化為動(dòng)直線斜率的最值問(wèn)題.(2)形如t=ax+by形式的最值問(wèn)題可轉(zhuǎn)化為動(dòng)直線截距的最值問(wèn)題.(3)形如m=(x-a)2+(y-b)2形式的最值問(wèn)題可轉(zhuǎn)化為動(dòng)點(diǎn)到定點(diǎn)的距離的平方的最值問(wèn)題.斜率型、截距型、距離型最值問(wèn)題[典例1-1]已知實(shí)數(shù)x,y滿意方程x2+y2-4x+1=0.(1)求eq\f(y,x)的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.[解]原方程可化為(x-2)2+y2=3,表示以(2,0)為圓心,eq\r(3)為半徑的圓.(1)eq\f(y,x)的幾何意義是圓上一點(diǎn)與原點(diǎn)連線的斜率,所以設(shè)eq\f(y,x)=k,即y=kx.當(dāng)直線y=kx與圓相切時(shí),斜率k取最大值或最小值,此時(shí)eq\f(|2k-0|,\r(k2+1))=eq\r(3),解得k=±eq\r(3)(如圖1).所以eq\f(y,x)的最大值為eq\r(3),最小值為-eq\r(3).圖1圖2圖3(2)y-x可看作是直線y=x+b在y軸上的截距,當(dāng)直線y=x+b與圓相切時(shí),縱截距b取得最大值或最小值,此時(shí)eq\f(|2-0+b|,\r(2))=eq\r(3),解得b=-2±eq\r(6)(如圖2).所以y-x的最大值為-2+eq\r(6),最小值為-2-eq\r(6).(3)x2+y2表示圓上的一點(diǎn)與原點(diǎn)距離的平方,由平面幾何學(xué)問(wèn)知,x2+y2在原點(diǎn)和圓心連線與圓的兩個(gè)交點(diǎn)處取得最大值和最小值(如圖3).又圓心到原點(diǎn)的距離為eq\r(2-02+0-02)=2,所以x2+y2的最大值是(2+eq\r(3))2=7+4eq\r(3),x2+y2的最小值是(2-eq\r(3))2=7-4eq\r(3).點(diǎn)評(píng):與圓有關(guān)的斜率型、截距型、距離型最值問(wèn)題一般依據(jù)相應(yīng)幾何意義,利用圓的幾何性質(zhì)數(shù)形結(jié)合求解.利用對(duì)稱性求最值[典例1-2]已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為()A.5eq\r(2)-4 B.eq\r(17)-1C.6-2eq\r(2) D.eq\r(17)A[P是x軸上隨意一點(diǎn),則|PM|的最小值為|PC1|-1,同理|PN|的最小值為|PC2|-3(圖略),則|PM|+|PN|的最小值為|PC1|+|PC2|-4.作C1關(guān)于x軸的對(duì)稱點(diǎn)C′1(2,-3).所以|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=5eq\r(2),即|PM|+|PN|=|PC1|+|PC2|-4≥5eq\r(2)-4.]點(diǎn)評(píng):求解形如|PM|+|PN|(其中M,N均為動(dòng)點(diǎn))且與圓C有關(guān)的折線段的最值問(wèn)題的基本思路:(1)“動(dòng)化定”,把與圓上動(dòng)點(diǎn)的距離轉(zhuǎn)化為與圓心的距離.(2)“曲化直”,即將折線段之和轉(zhuǎn)化為同始終線上的兩線段之和,一般要通過(guò)對(duì)稱性解決.eq\a\vs4\al([跟進(jìn)訓(xùn)練])1.(2024·全國(guó)卷Ⅲ)直線x+y+2=0分別與x軸、y軸交于A,B兩點(diǎn),點(diǎn)P在圓(x-2)2+y2=2上,則△ABP面積的取值范圍是()A.[2,6] B.[4,8]C.[eq\r(2),3eq\r(2)] D.[2eq\r(2),3eq\r(2)]A[圓心(2,0)到直線的距離d=eq\f(|2+0+2|,\r(2))=2eq\r(2),所以點(diǎn)P到直線的距離d1∈[eq\r(2),3eq\r(2)].依據(jù)直線的方程可知A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(0,-2),所以|AB|=2eq\r(2),所以△ABP的面積S=eq\f(1,2)|AB|d1=eq\r(2)d1.因?yàn)閐1∈[eq\r(2),3eq\r(2)],所以S∈[2,6],即△ABP面積的取值范圍是[2,6].]2.(2024·南寧模擬)一束光線從點(diǎn)A(-3,2)動(dòng)身,經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路徑的長(zhǎng)度是()A.4 B.5C.5eq\r(2)-1 D.2eq\r(6)-1C[依據(jù)題意,設(shè)A′與A關(guān)于x軸對(duì)稱,且A(-3,2),則A′的坐標(biāo)為(-3,-2),又由A′C=eq\r(25+25)=5eq\r(2),則A′到圓C上的點(diǎn)的最短距離為5eq\r(2)-1.故這束光線從點(diǎn)A(-3,2)動(dòng)身,經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路徑的長(zhǎng)度是5eq\r(2)-1,故選C.]考點(diǎn)三與圓有關(guān)的軌跡問(wèn)題求與圓有關(guān)的軌跡問(wèn)題的四種方法[典例2]已知直角三角形ABC的斜邊為AB,且A(-1,0),B(3,0).求:(1)直角頂點(diǎn)C的軌跡方程;(2)直角邊BC的中點(diǎn)M的軌跡方程.[解](1)法一:(干脆法)設(shè)C(x,y),因?yàn)锳,B,C三點(diǎn)不共線,所以y≠0.因?yàn)锳C⊥BC,所以kAC·kBC=-1,又kAC=eq\f(y,x+1),kBC=eq\f(y,x-3),所以eq\f(y,x+1)·eq\f(y,x-3)=-1,化簡(jiǎn)得x2+y2-2x-3=0.因此,直角頂點(diǎn)C的軌跡方程為x2+y2-2x-3=0(y≠0).法二:(定義法)設(shè)AB的中點(diǎn)為D,由中點(diǎn)坐標(biāo)公式得D(1,0),由直角三角形的性質(zhì)知|CD|=eq\f(1,2)|AB|=2.由圓的定義知,動(dòng)點(diǎn)C的軌跡是以D(1,0)為圓心,2為半徑的圓(由于A,B,C三點(diǎn)不共線,所以應(yīng)除去與x軸的交點(diǎn)).所以直角頂點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0).(2)(代入法)設(shè)M(x,y),C(x0,y0),因?yàn)锽(3,0),M是線段BC的中點(diǎn),由中點(diǎn)坐標(biāo)公式得x=eq\f(x0+3,2),y=eq\f(y0+0,2),所以x0=2x-3,y0=2y.由(1)知,點(diǎn)C的軌跡方程為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度南京家庭裝修工程變更管理合同3篇
- 二零二五版農(nóng)民工施工安全防護(hù)設(shè)施租賃合同4篇
- 二零二五年度企業(yè)會(huì)計(jì)高級(jí)人才聘用合同
- 二零二五年度虛擬干股分紅與虛擬現(xiàn)實(shí)旅游項(xiàng)目合同
- 2025年度汽車(chē)零部件貿(mào)易居間服務(wù)合同
- 2025年度會(huì)展活動(dòng)臨時(shí)工組織與管理合同
- 2025年度貨車(chē)運(yùn)輸貨物追蹤與物流數(shù)據(jù)分析合同
- 2025年度草原承包合同-草原文化旅游項(xiàng)目投資開(kāi)發(fā)合同
- 二零二五年度大型電商平臺(tái)APP定制合同
- 2025年度鋁合金材料行業(yè)政策研究與解讀合同
- 南安市第三次全國(guó)文物普查不可移動(dòng)文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識(shí)培訓(xùn)課件
- 項(xiàng)目前期選址分析報(bào)告
- 急性肺栓塞搶救流程
- 《統(tǒng)計(jì)學(xué)-基于Python》 課件全套 第1-11章 數(shù)據(jù)與Python語(yǔ)言-時(shí)間序列分析和預(yù)測(cè)
- 《形象價(jià)值百萬(wàn)》課件
- 紅色文化教育國(guó)內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎(chǔ)理論-肝
- 小學(xué)外來(lái)人員出入校門(mén)登記表
- 《土地利用規(guī)劃學(xué)》完整課件
- GB/T 25283-2023礦產(chǎn)資源綜合勘查評(píng)價(jià)規(guī)范
評(píng)論
0/150
提交評(píng)論