![湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view8/M01/1B/3D/wKhkGWcegyWAQkmuAAF6zsl-JFQ525.jpg)
![湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view8/M01/1B/3D/wKhkGWcegyWAQkmuAAF6zsl-JFQ5252.jpg)
![湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view8/M01/1B/3D/wKhkGWcegyWAQkmuAAF6zsl-JFQ5253.jpg)
![湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view8/M01/1B/3D/wKhkGWcegyWAQkmuAAF6zsl-JFQ5254.jpg)
![湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view8/M01/1B/3D/wKhkGWcegyWAQkmuAAF6zsl-JFQ5255.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省永州市新田一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.圓與圓的位置關系為()A.外切 B.內切C.相交 D.相離2.已知圓與圓外切,則()A. B.C. D.3.直線l經過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.4.橢圓的短軸長為()A.8 B.2C.4 D.5.如圖,棱長為1的正方體中,為線段上的動點,則下列結論錯誤的是A.B.平面平面C.的最大值為D.的最小值為6.已知函數(shù)在上可導,且,則與的大小關系為A. B.C. D.不確定7.雙曲線的左、右焦點分別為、,過點且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點,若,則雙曲線C的離心率為()A. B.C. D.8.已知數(shù)列中,,則()A. B.C. D.9.直線的方向向量為()A. B.C. D.10.若空間中n個不同的點兩兩距離都相等,則正整數(shù)n的取值A.至多等于3 B.至多等于4C.等于5 D.大于511.如圖,在正方體中,是側面內一動點,若到直線與直線的距離相等,則動點的軌跡所在的曲線是()A.直線 B.圓C.雙曲線 D.拋物線12.若命題“,”是假命題,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,若,,使得,則實數(shù)a的取值范圍是______14.已知空間向量,則使成立的x的值為___________15.已知直線與平行,則實數(shù)的值為_____________.16.直線與橢圓交于,兩點,線段的中點為,設直線的斜率為,直線(其中為坐標原點)的斜率為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,橢圓:離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.設過點的動直線與相交于,兩點(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請說明理由18.(12分)已知向量,,且.(1)求滿足上述條件的點M(x,y)的軌跡C的方程;(2)設曲線C與直線y=kx+m(k≠0)相交于不同的兩點P,Q,點A(0,1),當|AP|=|AQ|時,求實數(shù)m的取值范圍.19.(12分)設函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調遞減,求a的取值范圍20.(12分)已知橢圓C:的上頂點與橢圓的左右頂點連線的斜率之積為-.(1)求橢圓C的離心率(2)點M(,)在橢圓C上,橢圓的左頂點為D,上頂點為B,點A的坐標為(1,0),過點D的直線L與橢圓在第一象限交于點P,與直線AB交于點Q設L的斜率為k,若,求k的值.21.(12分)設函數(shù)(1)求的值;(2)求的極大值22.(10分)已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設,判斷是否為定值?若是,求出該定值;若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關系進行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A2、D【解析】根據(jù)兩圓外切關系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關系知:,可得.故選:D.3、B【解析】聯(lián)立已知兩條直線方程求出交點,再根據(jù)兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.4、C【解析】根據(jù)橢圓的標準方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.5、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態(tài)問題【思路點睛】立體幾何問題的求解策略是通過降維,轉化為平面幾何問題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對于球的內接外切問題,作適當?shù)慕孛?,既要能反映出位置關系,又要反映出數(shù)量關系;求曲面上兩點之間的最短距離,通過化曲為直轉化為同一平面上兩點間的距離6、B【解析】由,所以.7、C【解析】由,且,可得,再結合,可得,進而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因為,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因為,所以.故選:C.【點睛】方法點睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關系,利用求解;(2)根據(jù)條件列出的齊次方程,利用轉化為關于的方程,解方程即可,注意根據(jù)對所得解進行取舍.8、D【解析】由數(shù)列的遞推公式依次去求,直到求出即可.【詳解】由,可得,,,故選:D.9、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D10、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題11、D【解析】由到直線的距離等于到點的距離可得到直線的距離等于到點的距離,然后可得答案.【詳解】因為到直線的距離等于到點的距離,所以到直線的距離等于到點的距離,所以動點的軌跡是以為焦點、為準線的拋物線故選:D12、A【解析】根據(jù)命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數(shù)的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數(shù)的取值范圍是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出兩函數(shù)在上的值域,再由已知條件可得,且,列不等式組可求得結果【詳解】由,得,當時,,所以在上單調遞減,所以,即,由,得,當時,,所以在上單調遞增,所以,即,因為,,使得,所以,解得,故答案為:14、##【解析】利用空間向量垂直的坐標表示列方程求參數(shù)x的值.【詳解】由題設,,可得.故答案為:.15、或【解析】根據(jù)平行線的性質進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或16、##-0.0625【解析】使用點差法即可求解﹒【詳解】設,,則①-②得:,即,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在;或.【解析】(1)設,由,,,求得的值即可得橢圓的方程;(2)設,,直線的方程為與橢圓方程聯(lián)立可得,,進而可得弦長,求出點到直線的距離,解方程,求得的值即可求解.【小問1詳解】設,因為直線的斜率為,,所以,可得,又因為,所以,所以,所以橢圓的方程為【小問2詳解】假設存在直線,使得的面積為,當軸時,不合題意,設,,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.18、(1)+y2=1;(2).【解析】(1)應用向量垂直的坐標表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點P(x1,y1),Q(x2,y2),設直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關系用m,k表示x1+x2,x1x2,若N為PQ的中點結合|AP|=|AQ|知PQ⊥AN可得m、k的等量關系,結合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.設P(x1,y1),Q(x2,y2),線段PQ的中點N(x0,y0),則.∵|AP|=|AQ|,即知PQ⊥AN,設kAN表示直線AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.將②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范圍為.【點睛】思路點睛:1、由向量垂直,結合其坐標表示得到關于x,y的方程,寫出曲線C的標準方程即可.2、由直線與曲線C相交,聯(lián)立方程有,由|AP|=|AQ|得直線的垂直關系,即斜率之積為-1,進而可求參數(shù)的范圍.19、(1)(2)【解析】(1)對求導,再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區(qū)間上的最小值即可得出結論.【詳解】(1),則,因為在處取得極值,所以,解得,經檢驗,當時,在處取得極值;(2)因為在上單調遞減,所以對恒成立,則對恒成立,∵當時,,∴,即a的取值范圍為.【點睛】本題主要考查利用函數(shù)的單調性與極值求參,需要學生對相關基礎知識牢固掌握且靈活運用.20、(1)(2)1【解析】(1)根據(jù)橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,由求解;(2)根據(jù)點M(,)在橢圓C上,頂點,再由,求得橢圓方程,由,結合,得到,設直線方程為,與橢圓方程聯(lián)立,求得點P的坐標,再由,求得Q的坐標,代入求解.【小問1詳解】解:設橢圓C:的上頂點為,左頂點為,右頂點為,因為橢圓的上頂點與橢圓的左右頂點連線的斜率之積為-,所以,即,又所以,解得;【小問2詳解】因為點M(,)在橢圓C上,所以,又,解得,所以橢圓方程為,,則,因為,所以,又,所以,則,設,則,當時,則,不合題意;當時,設直線方程為,與題意方程聯(lián)立,消去y得:則,所以,則,因為,由,得,因為,所以,化簡得,因,則.21、(1)-3(2)2【解析】(1)利用導數(shù)公式和法則求解;(2)令,利用極大值的定義求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度海洋生物資源保護保險合同協(xié)議書
- 2025年度綠色建筑項目環(huán)境保護竣工驗收服務合同
- 企業(yè)高層職務聘任合同書(2024年版)版B版
- 2025版西安裝修公司家庭住宅裝修工程款支付合同3篇
- 2025年度城市基礎設施固定資產買賣合同范本
- 2025年度綠色建筑鋼筋采購合同(品質保障版)
- 2025年度智慧城市建設合同格式范本
- 2025年大型活動廣告布置與拆除服務合同范本
- 2025年度汽車保險代理服務貸款合同范本正規(guī)范
- 2025年度新能源電動汽車銷售提成協(xié)議書合同范本
- 國際貿易地理 全套課件
- GB/T 20878-2024不銹鋼牌號及化學成分
- 某房屋建筑工程監(jiān)理大綱
- 英語考綱詞匯表3500詞
- 主題一:人文之美 第7課《天下第一大佛-樂山大佛》 課件
- 印度與阿拉伯的數(shù)學
- 會陰切開傷口裂開的護理查房
- 《鋼鐵是怎樣煉成的》選擇題100題(含答案)
- 2024年國新國際投資有限公司招聘筆試參考題庫含答案解析
- 食堂餐廳服務方案投標方案(技術標)
- Creo-7.0基礎教程-配套課件
評論
0/150
提交評論