版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省遼河高級(jí)中學(xué)2025屆數(shù)學(xué)高二上期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“若,則”的否命題是()A.若,則 B.若,則C.若,則 D.若,則2.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.3.與直線關(guān)于軸對(duì)稱的直線的方程為()A. B.C. D.4.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.5.若在1和16中間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,則公比為()A. B.2C. D.46.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個(gè)個(gè)包含等同內(nèi)容的基本單位,這個(gè)基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點(diǎn)位置,O原子位于棱的中點(diǎn)).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.7.設(shè),命題“若,則或”的否命題是()A.若,則或B.若,則或C.若,則且D.若,則且8.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若,則|QF|=()A. B.C.3 D.29.?dāng)?shù)列1,6,15,28,45,…中的每一項(xiàng)都可用如圖所示的六邊形表示出米,故稱它們?yōu)榱呅螖?shù),那么第11個(gè)六邊形數(shù)為()A.153 B.190C.231 D.27610.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為,如.如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的“中國(guó)剩余定理”.執(zhí)行該程序框圖,則輸出的i等于()A.7 B.10C.13 D.1611.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.12.若橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量均為非零向量,且滿足,記向量在向量上投影向量為,則k=______.(用數(shù)字作答)14.若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是______.15.經(jīng)過(guò)點(diǎn)且與雙曲線有公共漸近線的雙曲線方程為_(kāi)________16.已知是雙曲線的左、右焦點(diǎn),點(diǎn)M是雙曲線E上的任意一點(diǎn)(不是頂點(diǎn)),過(guò)作角平分線的垂線,垂足為N,O是坐標(biāo)原點(diǎn).若,則雙曲線E的漸近線方程為_(kāi)_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)點(diǎn)與定點(diǎn)的距離和它到直線:的距離的比是常數(shù).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)點(diǎn)在(1)中軌跡上運(yùn)動(dòng)軸,為垂足,點(diǎn)滿足,求點(diǎn)軌跡方程.18.(12分)已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(1)求B;(2)若,求的面積的最大值19.(12分)已知在長(zhǎng)方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點(diǎn)F,使二面角A-BE-F的余弦值為?若存在,找出點(diǎn)F的位置;若不存在,說(shuō)明理由.20.(12分)已知橢圓經(jīng)過(guò)點(diǎn),橢圓E的一個(gè)焦點(diǎn)為(1)求橢圓E的方程;(2)若直線l過(guò)點(diǎn)且與橢圓E交于A,B兩點(diǎn).求的最大值21.(12分)如圖,在四棱錐中,底面ABCD是邊長(zhǎng)為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)原命題的否命題是條件結(jié)論都要否定【詳解】解:因?yàn)樵}的否命題是條件結(jié)論都要否定所以命題“若,則”的否命題是若,則;故選:B2、C【解析】由雙曲線的方程直接求出見(jiàn)解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C3、D【解析】點(diǎn)關(guān)于x軸對(duì)稱,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù),據(jù)此即可求解.【詳解】設(shè)(x,y)是與直線關(guān)于軸對(duì)稱的直線上任意一點(diǎn),則(x,-y)在上,故,∴與直線關(guān)于軸對(duì)稱的直線的方程為.故選:D.4、A【解析】根據(jù)等差數(shù)列的通項(xiàng)公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A5、A【解析】根據(jù)等比數(shù)列的通項(xiàng)得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項(xiàng)得:,,故選:A.6、C【解析】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長(zhǎng)為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標(biāo)原點(diǎn),所在的直線分別為軸,建立直角坐標(biāo)系,設(shè)立方體的棱長(zhǎng)為,則,,,,連線與所成角的余弦值為故選:C.7、C【解析】根據(jù)否命題的定義直接可得.【詳解】根據(jù)否命題的定義可得命題“若,則或”的否命題是若,則且,故選:C.8、C【解析】過(guò)點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,利用拋物線定義以及相似得到|QF|=|QQ′|=3.【詳解】如圖所示:過(guò)點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,因?yàn)椋詜PQ|∶|PF|=3∶4,又焦點(diǎn)F到準(zhǔn)線l的距離為4,所以|QF|=|QQ′|=3.故選C.【點(diǎn)睛】本題考查了拋物線的定義應(yīng)用,意在考查學(xué)生的計(jì)算能力.9、C【解析】細(xì)心觀察,尋求相鄰項(xiàng)及項(xiàng)與序號(hào)之間的關(guān)系,同時(shí)聯(lián)系相關(guān)知識(shí),如等差數(shù)列、等比數(shù)列等,結(jié)合圖形即可求解.【詳解】由題意知,數(shù)列的各項(xiàng)為1,6,15,28,45,...所以,,,,,,所以.故選:C10、C【解析】根據(jù)“中國(guó)剩余定理”,進(jìn)而依次執(zhí)行循環(huán)體,最后求得答案.【詳解】由題意,第一步:,余數(shù)不為1;第二步:,余數(shù)不為1;第三步:,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)不為2;第四步:,執(zhí)行第一個(gè)判斷框,余數(shù)為1,執(zhí)行第二個(gè)判斷框,余數(shù)為2.輸出的i值為13.故選:C.11、D【解析】對(duì)選項(xiàng)A,令即可檢驗(yàn);對(duì)選項(xiàng)B,令即可檢驗(yàn);對(duì)選項(xiàng)C,令即可檢驗(yàn);對(duì)選項(xiàng)D,設(shè)出等差數(shù)列的首項(xiàng)和公比,然后作差即可.【詳解】若,則可得:,故選項(xiàng)A錯(cuò)誤;若,則可得:,故選項(xiàng)B錯(cuò)誤;若,則可得:,故選項(xiàng)C錯(cuò)誤;不妨設(shè)的首項(xiàng)為,公差為,則有:則有:,故選項(xiàng)D正確故選:D12、B【解析】求出拋物線的焦點(diǎn)坐標(biāo),可得出的值,進(jìn)而可求得橢圓的離心率.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,由已知可得,可得,因此,該橢圓的離心率為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##1.5【解析】由兩邊平方可得,,,設(shè),向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對(duì)角線,,由余弦定理可得,向量在向量上投影向量為,化簡(jiǎn)可得答案.【詳解】因?yàn)?,所以,,兩邊平方整理得,,兩邊平方整理得,即,可得,,設(shè),所以向量是以向量為鄰邊的平行四邊形、有共同起點(diǎn)的對(duì)角線,如圖,即,因?yàn)?,,平行四邊形即為的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量為,?故答案為:.14、【解析】設(shè)由題可知,當(dāng)時(shí),可得適合題意,當(dāng)時(shí),可求函數(shù)的最小值即得,當(dāng)時(shí)不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時(shí),,適合題意,所以,當(dāng)時(shí),令,則,此時(shí)時(shí),,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時(shí),時(shí),,,故的值有正有負(fù),不合題意;綜上,實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時(shí),利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進(jìn)而通過(guò)解,即得.15、【解析】由題意設(shè)所求雙曲線的方程為,∵點(diǎn)在雙曲線上,∴,∴所求的雙曲線方程為,即答案:16、【解析】延長(zhǎng)交于點(diǎn),利用角平分線結(jié)合中位線和雙曲線定義求得的關(guān)系,然后利用,及漸近線方程即可求得結(jié)果.【詳解】延長(zhǎng)交于點(diǎn),∵是的平分線,,,又是中點(diǎn),所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡(jiǎn)即可得出答案。(2)設(shè),利用表示出點(diǎn),再將點(diǎn)代入橢圓,化簡(jiǎn)即可得出答案?!驹斀狻浚?)由題意知,所以化簡(jiǎn)得:(2)設(shè),因?yàn)?,則將代入橢圓得化簡(jiǎn)得【點(diǎn)睛】本題考查軌跡方程,一般求某點(diǎn)的軌跡方程,只需要設(shè)該點(diǎn)為,利用所給條件建立的關(guān)系式,化簡(jiǎn)即可。屬于基礎(chǔ)題。18、(1)(2)【解析】(1):根據(jù)正弦定理由邊化角和三角正弦和公式即可求解;(2):根據(jù)余弦定理和均值不等式求得最大值,利用面積公式即可求解【小問(wèn)1詳解】由正弦定理及,得,∵,∵,∴【小問(wèn)2詳解】由余弦定理,∴,∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的面積的最大值為19、(1)證明見(jiàn)解析(2)點(diǎn)F為線段AC的中點(diǎn)【解析】(1)由平面幾何知識(shí)證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點(diǎn)O,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點(diǎn)F,設(shè)=λ,運(yùn)用二面角的向量求解方法可求得,可得點(diǎn)F的位置.【小問(wèn)1詳解】證明:因?yàn)樵陂L(zhǎng)方形ABCD中,AD=2AB=2,點(diǎn)E是AD的中點(diǎn),所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問(wèn)2詳解】解:存在點(diǎn)F,F(xiàn)為線段AC的中點(diǎn).由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點(diǎn)O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點(diǎn),分別以的方向?yàn)閤軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個(gè)法向量為.假設(shè)在線段AC上存在點(diǎn)F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點(diǎn)F為線段AC的中點(diǎn)時(shí),二面角A-BE-F的余弦值為.20、(1);(2).【解析】(1)利用代入法,結(jié)合焦點(diǎn)的坐標(biāo)、橢圓中的關(guān)系進(jìn)行求解即可;(2)根據(jù)直線l是否存在斜率分類討論,結(jié)合一元二次方程根的判別式、根與系數(shù)關(guān)系、弦長(zhǎng)公式、基本不等式進(jìn)行求解即可.【小問(wèn)1詳解】依題意:,解得,,∴橢圓E的方程為;【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè),,由得由得.由,得當(dāng)且僅當(dāng),即時(shí)等號(hào)成立當(dāng)直線l的斜率不存在時(shí),,∴的最大值為21、(1)證明見(jiàn)解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小問(wèn)1詳解】連接BD,與AC交于點(diǎn)O,在中,因?yàn)镺,M分別為BD,PD的中點(diǎn),則,又平面ACM,平面ACM,所以平面ACM.【小問(wèn)2詳解】設(shè)E是AB的中點(diǎn),連接PE,因?yàn)闉檎切危瑒t,又因?yàn)槠矫娴酌鍭BCD,平面平面,則平面ABCD,過(guò)點(diǎn)E作EF平行于CB,與CD交于點(diǎn)F,以E為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,,,,,,所以,,設(shè)平面CBM的法向量為,則,令,則,因?yàn)槠矫鍭BCD,則平面ABCD的一個(gè)法向量為,所以,所以平面MBC與平面DBC所成角大小為30
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園工作總結(jié)感恩每一天
- 2024年設(shè)備監(jiān)理師考試題庫(kù)含答案(綜合卷)
- 演藝經(jīng)紀(jì)人的工作總結(jié)
- 服裝行業(yè)的搭配顧問(wèn)工作總結(jié)
- 建材行業(yè)行政后勤工作總結(jié)
- 2025年高考?xì)v史一輪復(fù)習(xí)之文化傳承與文化創(chuàng)新
- 花藝裝飾行業(yè)美工工作技能總結(jié)
- 2024年設(shè)備監(jiān)理師考試題庫(kù)及答案【真題匯編】
- 2024消防安全知識(shí)教育總結(jié)范文(35篇)
- 農(nóng)村蓋房傷亡合同(2篇)
- 大慶市2025屆高三年級(jí)第二次教學(xué)質(zhì)量檢測(cè)(二模)政治試卷(含答案)
- 2025年內(nèi)江資中縣融媒體中心招考聘用新媒體工作人員3人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 裝修材料合同范例
- 【7地RJ期末】安徽省合肥市廬江縣2023-2024學(xué)年七年級(jí)上學(xué)期期末地理試題(含解析)
- 共用線路三方協(xié)議合同范例
- 戰(zhàn)略規(guī)劃的關(guān)鍵要點(diǎn)
- 社會(huì)工作服務(wù)質(zhì)量保障措施
- 雅禮中學(xué)2024-2025學(xué)年初三創(chuàng)新人才選拔數(shù)學(xué)試題及答案
- 冬季高空作業(yè)施工方案
- 山西云時(shí)代技術(shù)有限公司招聘筆試題目
- 2024-2025學(xué)年人教版九年級(jí)數(shù)學(xué)上學(xué)期復(fù)習(xí):圓的綜合解答題 壓軸題型專項(xiàng)訓(xùn)練(30道題)
評(píng)論
0/150
提交評(píng)論