江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省崇仁縣第二中學2025屆高二上數(shù)學期末教學質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地為響應總書記關于生態(tài)文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數(shù)據(jù).如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米2.已知點是橢圓上的一點,點,則的最小值為A. B.C. D.3.設.若,則=()A. B.C. D.e4.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.5.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.46.在等差數(shù)列中,若,則()A.5 B.6C.7 D.87.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.8.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?39.為調(diào)查學生的課外閱讀情況,學校從高二年級四個班的182人中隨機抽取30人了解情況,若用系統(tǒng)抽樣的方法,則抽樣的間隔和隨機剔除的個數(shù)分別為()A.6,2 B.2,3C.2,60 D.60,210.設變量滿足約束條件,則的最大值為()A.0 B.C.3 D.411.某市要對兩千多名出租車司機的年齡進行調(diào)查,現(xiàn)從中隨機抽出100名司機,已知抽到的司機年齡都在[20,45]歲之間,根據(jù)調(diào)查結果得出司機的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個殘缺的頻率分布直方圖估計該市出租車司機年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲12.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程為___________.14.已知直線和平面,且;①若異面,則至少有一個與相交;②若垂直,則至少有一個與垂直;對于以上命題中,所有正確的序號是___________.15.橢圓上一點到兩個焦點的距離之和等于,則的標準方程為______.16.已知圓錐的母線長為cm,其側面展開圖是一個半圓,則底面圓的半徑為____cm.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線過點.(1)求拋物線方程;(2)若直線與拋物線交于兩點兩點在軸的兩側,且,求證:過定點.18.(12分)在等差數(shù)列中,已知公差,前項和(其中)(1)求;(2)求和:19.(12分)(1)某校運動會上甲、乙、丙、丁四名同學在100m、400m、800m三個項目中選擇,每人報一項,共有多少種報名方法?(2)若甲、乙、丙、丁四名同學選報100m、400m、800m三個項目,每項均有一人報名,且每人至多報一項,共有多少種報名方法?(3)若甲、乙、丙、丁名同學爭奪100m、400m、800m三項冠軍,共有多少種可能的結果?20.(12分)已知拋物線的焦點為F,其中P為E的準線上一點,O是坐標原點,且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點,在x軸上是否存在定點,使得x軸平分?若存在,求出點M的坐標;若不存在,請說明理由21.(12分)已知定點,動點滿足,設點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.22.(10分)已知函數(shù).若函數(shù)有兩個極值點,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】應用正弦定理有,結合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C2、D【解析】設,則,.所以當時,的最小值為.故選D.3、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.4、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.5、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B6、B【解析】由得出.【詳解】由可得,故選:B7、C【解析】設,用表示出,求得的表達式,結合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設,則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C8、B【解析】先畫出可行域,由,得,作出直線,過點時,取得最大值,求出點的坐標代入目標函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點時,取得最大值,由,得,即,所以的最大值為,故選:B9、A【解析】根據(jù)系統(tǒng)抽樣的方法即可求解.【詳解】從人中抽取人,除以,商余,故抽樣的間隔為,需要隨機剔除人.故選:A.10、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義,即可求出目標函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標函數(shù),即,表示斜率為,截距為的直線,由圖可知,當直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.11、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設中位數(shù)為,則有,解得(歲),故選C【點睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計算,計算時要充分利用頻率分布直方圖中中位數(shù)的計算原理來計算,考查計算能力,屬于中等題12、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因為A=B,若,解得,當時,不滿足互異性,舍去,當時,A={1,-1,b},B={1,-1,-b},因為A=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點睛】本題考查兩集合相等的概念,在集合相等問題中由一個條件求出參數(shù)后需進行代入檢驗,檢驗是否滿足互異性、題設條件等,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對函數(shù)求導,由導數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.14、①②【解析】假設與都不相交得到,得到①正確,若不垂直,上取一點,作交于,得到,得到②正確,得到答案.【詳解】若與都不相交,,,則,同理,故,與異面矛盾,①正確;若不垂直,上取一點,作交于,,,故,,故,,,故,,,故,②正確.故答案為:①②.15、【解析】根據(jù)橢圓定義求出其長半軸長,再結合焦點坐標即可計算作答.【詳解】因橢圓上一點到兩個焦點的距離之和等于,則該橢圓長半軸長,而半焦距,于是得短半軸長b,有,所以的標準方程為.故答案為:16、【解析】根據(jù)題意可知圓錐側面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側面的弧長,即可求出結果.【詳解】設底面圓的半徑為,由于側面展開圖是一個半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)運用代入法直接求解即可;(2)設出直線的方程與拋物線方程聯(lián)立,結合一元二次方程根與系數(shù)關系、平面向量數(shù)量積的坐標表示公式進行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設,,∴OA→?因為直線與拋物線交于兩點兩點在軸的兩側,所以,即過定點.【點睛】關鍵點睛:運用一元二次方程根與系數(shù)關系是解題的關鍵.18、(1)12(2)18【解析】(1)根據(jù)已知的,利用等差數(shù)列的通項公式和前n項和公式即可列式求解;(2)由第(1)問中求解出的的通項公式,要求前12項絕對值的和,可以發(fā)現(xiàn),該數(shù)列前6項為正項,后6項為負項,因此在算和的時候,后6項和可以取原通項公式的相反數(shù)即可計算,即為,然后再加上前6項和,即為要求的前12項絕對值的和.【小問1詳解】由題意可得,在等差數(shù)列中,已知公差,前項和所以,解之得,所以n=12【小問2詳解】由(1)可知數(shù)列{an}的通項公式為,所以即19、(1)81種;(2)24種;(3)64種【解析】(1)利用分步計數(shù)原理可求報名方法總數(shù).(2)利用分步計數(shù)原理可求報名方法總數(shù).(3)利用分步計數(shù)原理可求報名方法總數(shù).【詳解】(1)要完成的是“4名同學每人從三個項目中選一項報名”這件事,因為每人必報一項,4人都報完才算完成,所以按人分步,且分為四步,又每人可在三項中選一項,選法為3種,所以共有(種)報名方法(2)每項限報一人,且每人至多報一項,因此100m項目有4種選法,400m項目有3種選法,800m項目只有2種選法.根據(jù)分步乘法計數(shù)原理,可得不同的報名方法有(種)(3)要完成的是“三個項目冠軍的獲取”這件事,因為每項冠軍只能有一人獲得,三項冠軍都有得主,這件事才算完成,所以應以“確定三項冠軍得主”為線索進行分步,而每項冠軍的得主有4種可能結果,所以共有(種)可能的結果20、(1)(2)存在;【解析】(1)設,利用向量坐標運算求出p即可;(2)設直線MC,MD的斜率分別為,,利用坐標計算恒成立,即可求解.【小問1詳解】拋物線的焦點為,設,則,因為,所以,得所以拋物線E的方程為【小問2詳解】假設在x軸上存在定點,使得x軸平分設直線的方程為,設點,,聯(lián)立,可得∵恒成立,∴,設直線MC,MD的斜率分別為,,則由定點,使得x軸平分,則,所以把根與系數(shù)的關系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點,使得x軸平分21、(1)(2)【解析】(1)設動點,根據(jù)條件列出方程,化簡求解即可;(2)設,求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設動點,則,,,又,∴,化簡得,即,∴動點的軌跡E的方程為.【小問2詳解】設,圓心到軌跡E上的點的距離∴當時,,∴.22、.【解析】求得,根據(jù)其在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論