




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省福州市三校聯(lián)盟2025屆高一數(shù)學第一學期期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在中,點是線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,且,則在直角坐標平面上,實數(shù)對所表示的區(qū)域在直線的右下側部分的面積是()A. B.C. D.不能求2.若,,,則()A. B.C. D.3.函數(shù)的單調遞增區(qū)間是A. B.C. D.4.函數(shù)零點所在區(qū)間為A. B.C. D.5.若點關于直線的對稱點是,則直線在軸上的截距是A.1 B.2C.3 D.46.為了保護水資源,提倡節(jié)約用水,某城市對居民生活用水實行“階梯水價”,計費方法如下表:每戶每月用水量水價不超過12m3的部分3元/m3超過12m3但不超過18m3的部分6元/m3超過18m3的部分9元/m3若某戶居民本月繳納的水費為90元,則此戶居民本月的用水量為()A.17 B.18C.19 D.207.已知函數(shù)的圖象與函數(shù)的圖象關于直線對稱,函數(shù)是滿足的偶函數(shù),且當時,,若函數(shù)有3個零點,則實數(shù)的取值范圍是()A. B.C. D.8.已知函數(shù),下列說法錯誤的是()A.函數(shù)在上單調遞減B.函數(shù)是最小正周期為的周期函數(shù)C.若,則方程在區(qū)間內(nèi),最多有4個不同的根D.函數(shù)在區(qū)間內(nèi),共有6個零點9.已知函數(shù),且在內(nèi)有且僅有兩個不同的零點,則實數(shù)的取值范圍是A. B.C. D.10.已知向量,,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù).則函數(shù)的最大值和最小值之積為______12.已知,若,使得,若的最大值為M,最小值為N,則___________.13.設角的頂點與坐標原點重合,始變與軸的非負半軸重合,若角的終邊上一點的坐標為,則的值為__________14.函數(shù)在上的最小值是__________15.在空間直角坐標系中,一點到三個坐標軸的距離都是1,則該點到原點的距離是________.16.①函數(shù)y=sin2x的單調增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數(shù),若不等式的解集為,且方程有兩個相等的實數(shù)根.(1)求的解析式;(2)若,成立,求實數(shù)m的取值范圍.18.如圖,有一塊半徑為4的半圓形鋼板,計劃裁剪成等腰梯形ABCD的形狀,它的下底AB是圓O的直徑,上底CD的端點在圓周上,連接OC兩點,OC與OB所形成的夾角為.(1)寫出這個梯形周長y和的函數(shù)解析式,并寫出它的定義域;(2)求周長y的最大值以及此時梯形的面積.19.已知,求值;已知,求的值20.已知集合,集合(1)當時,求和(2)若,求實數(shù)m的取值范圍21.已知函數(shù)是定義在上的奇函數(shù),且當時,(1)求實數(shù)的值;(2)求函數(shù)在上的解析式;(3)若對任意實數(shù)恒成立,求實數(shù)的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由點是由線段及、的延長線所圍成的陰影區(qū)域內(nèi)(含邊界)的任意一點,作的平行線,把中、所滿足的不等式表示出來,然后作出不等式組所表示的可行域,并計算出可行域在直線的右下側部分的面積即可.【詳解】如下圖,過作,交的延長線于,交的延長線于,設,,,,則,所以,得,所以.作出不等式組對應的可行域,如下圖中陰影部分所示,故所求面積為,故選:A.【點睛】本題考查二元一次不等式組與平面區(qū)域的關系,考查轉化思想,是難題.解決本題的關鍵是建立、的不等式組,將問題轉化為線性規(guī)劃問題求解.2、A【解析】先變形,然后利用指數(shù)函數(shù)的性質比較大小即可【詳解】,因為在上為減函數(shù),且,所以,所以,故選:A3、D【解析】,選D.4、C【解析】利用零點存在性定理計算,由此求得函數(shù)零點所在區(qū)間.【詳解】依題意可知在上為增函數(shù),且,,,所以函數(shù)零點在區(qū)間.故選C.【點睛】本小題主要考查零點存在性定理的運用,屬于基礎題.5、D【解析】∵點A(1,1)關于直線y=kx+b的對稱點是B(﹣3,3),由中點坐標公式得AB的中點坐標為,代入y=kx+b得①直線AB得斜率為,則k=2.代入①得,.∴直線y=kx+b為,解得:y=4.∴直線y=kx+b在y軸上的截距是4.故選D.6、D【解析】根據(jù)給定條件求出水費與水價的函數(shù)關系,再由給定函數(shù)值計算作答.【詳解】依題意,設此戶居民月用水量為,月繳納的水費為y元,則,整理得:,當時,,當時,,因此,由得:,解得,所以此戶居民本月的用水量為.故選:D7、B【解析】把函數(shù)有3個零點,轉化為有3個不同根,畫出函數(shù)與的圖象,轉化為關于的不等式組求解即可.【詳解】由函數(shù)的圖象與函數(shù)的圖象關于直線對稱,得,函數(shù)是最小正周期為2的偶函數(shù),當時,,函數(shù)有3個零點,即有3個不同根,畫出函數(shù)與的圖象如圖:要使函數(shù)與的圖象有3個交點,則,且,即.∴實數(shù)的取值范圍是.故選:B.8、B【解析】A.由時,判斷;B.易知是偶函數(shù),作出其圖象判斷;C.在同一坐標系中作出的圖象判斷;D.根據(jù)函數(shù)是偶函數(shù),利用其圖象,判斷的零點個數(shù)即可.【詳解】A.當時,,而,上遞減,故正確;B.因為,所以是偶函數(shù),當時,,作出其圖象如圖所示:由圖象知;函數(shù)不是周期函數(shù),故錯誤;C.在同一坐標系中作出的圖象,如圖所示:由圖象知:當,方程在區(qū)間內(nèi),最多有4個不同的根,故正確;D.因為函數(shù)是偶函數(shù),只求的零點個數(shù)即可,如圖所示:由函數(shù)圖象知,在區(qū)間內(nèi)共有3個,所以函數(shù)在區(qū)間內(nèi),共有6個零點,故正確;故選:B9、C【解析】由,即,分別作出函數(shù)和的圖象如圖,由圖象可知表示過定點的直線,當過時,此時兩個函數(shù)有兩個交點,當過時,此時兩個函數(shù)有一個交點,所以當時,兩個函數(shù)有兩個交點,所以在內(nèi)有且僅有兩個不同的零點,實數(shù)的取值范圍是,故選C.10、A【解析】因為,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、80【解析】根據(jù)二次函數(shù)的性質直接計算可得.【詳解】因為,所以當時,,當時,,所以最大值和最小值之積為.故答案為:8012、【解析】作出在上的圖象,為的圖象與直線y=m交點的橫坐標,利用數(shù)形結合思想即可求得M和N﹒【詳解】作出在上的圖象(如圖所示)因為,,所以當?shù)膱D象與直線相交時,由函數(shù)圖象可得,設前三個交點橫坐標依次為、、,此時和最小為N,由,得,則,,,;當?shù)膱D象與直線相交時,設三個交點橫坐標依次為、、,此時和最大為,由,得,則,,;所以.故答案為:.13、【解析】14、【解析】在上單調遞增最小值為15、【解析】設出點的坐標,根據(jù)題意列出方程組,從而求得該點到原點的距離.【詳解】設該點的坐標因為點到三個坐標軸的距離都是1所以,,,所以故該點到原點的距離為,故填.【點睛】本題主要考查了空間中點的坐標與應用,空間兩點間的距離公式,屬于中檔題.16、①④【解析】①由,解得.可得函數(shù)單調增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調性;③由,即可得出函數(shù)的最小正周期;④利用誘導公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質,考查了推理能力與計算能力,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)的解集為,可得1,2即為方程的兩根,根據(jù)韋達定理,可得b,c的表達式,根據(jù)有兩個相等的實數(shù)根.可得該方程,即可求得a的值,即可得答案;(2)由題意得使成立,則只需,利用基本不等式,即可求得答案.【詳解】(1)因為的解集為,所以1,2即為方程的兩根,由韋達定理得,且,解得,,又方程有兩個相等實數(shù)根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,則,,又,當且僅當,即x=2時等號成立,所以,使成立,等價為成立,所以.【點睛】已知解集求一元二次不等式參數(shù)時,關鍵是靈活應用韋達定理,進行求解,處理存在性問題時,需要,若處理恒成立問題時,需要,需認真區(qū)分問題,再進行解答,屬中檔題.18、(1),(2)20,【解析】(1)過點C作,表示出,,即可寫出梯形周長y和的函數(shù)解析式;(2)令,結合二次函數(shù)求出y的最大值,求出此時的,再計算梯形面積即可.【小問1詳解】由題意得.半圓形鋼板半徑為4,則,過點C作.在和中,有,,.在中,因為,為等腰三角形,故,所以,.,.【小問2詳解】由.令,則,則.則當時,周長y有最大值,最大值20,此時,.故梯形的高,,.19、(1)(2)【解析】(1)由三角函數(shù)中平方關系求得,再由誘導公式可商數(shù)關系化簡求值;(2)考慮到已知角與待求角互余,可直接利用誘導公式求值【詳解】解:已知,所以:,所以:,,,由于,所以:【點睛】本題考查同角間的三角函數(shù)關系與誘導公式,解題時需考慮已知角與未知角之間的關系,以尋求運用恰當?shù)墓竭M行化簡變形與求值20、(1)(或者);(或者)(2)【解析】(1)代入,結合集合的并、補運算即得解;(2)分,兩種情況討論,列出不等關系,計算即得解【小問1詳解】當時,所以(或者);(或者)【小問2詳解】當時,則,解得當時,則,解得,所以m不存在綜上所述,21、(1);(2);(3)【解析】(1)由題利用即可求解;(2)當x<0,則﹣x>0,根據(jù)函數(shù)為奇函數(shù)f(﹣x)=﹣f(x)及當x>0時,,可得函數(shù)在x<0時的解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國谷物聯(lián)合收割機行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國解聚設備行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國蔬菜烘干脫水機行業(yè)市場深度調研及發(fā)展趨勢與投資前景研究報告
- 2025-2030中國苯乙烯丙烯腈行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國花園碎紙機行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國船用磁力計行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025年成都貨運從業(yè)考試試題答案大全
- 2025年銅陵貨運從業(yè)資格證模擬考試駕考
- 母嬰護理培訓
- 2025年常州貨車從業(yè)資格證理考試
- 骨關節(jié)病的健康教育
- 靜療橫斷面調查護理
- DB45T 1056-2014 土地整治工程 第2部分:質量檢驗與評定規(guī)程
- 2025年3月《提振消費專項行動方案》解讀學習課件
- 4-6歲幼兒同伴交往能力量表
- 人教版 數(shù)學一年級下冊 第三單元 100以內(nèi)數(shù)的認識綜合素養(yǎng)評價(含答案)
- T-CEPPC 18-2024 電力企業(yè)數(shù)字化轉型成熟度評價指南
- XX化工企業(yè)停工安全風險評估報告
- 2025年濟源職業(yè)技術學院單招職業(yè)技能測試題庫學生專用
- 全國川教版信息技術八年級下冊第二單元第3節(jié)《評價文創(chuàng)作品》教學設計
- 急診科護理創(chuàng)新管理
評論
0/150
提交評論