版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省延邊州汪清縣第六中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若命題“對(duì)任意,使得成立”是真命題,則實(shí)數(shù)a的取值范圍是()A. B.C. D.2.下列關(guān)于命題的說法錯(cuò)誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點(diǎn),則”的逆命題為真命題3.已知直線與圓交于A,B兩點(diǎn),O為原點(diǎn),且,則實(shí)數(shù)m等于()A. B.C. D.4.已知數(shù)列通項(xiàng)公式,則()A.6 B.13C.21 D.315.某班新學(xué)期開學(xué)統(tǒng)計(jì)新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.6.在的展開式中,的系數(shù)為()A. B.5C. D.107.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則公差的值為()A. B.2C.3 D.48.某地為應(yīng)對(duì)極端天氣搶險(xiǎn)救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時(shí)之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.149.已知圓:,圓:,則兩圓的位置關(guān)系為()A.外離 B.外切C.相交 D.內(nèi)切10.已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)為拋物線上的任意一點(diǎn),為平面上點(diǎn),則的最小值為A.3 B.2C.4 D.11.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品12.已知橢圓的右焦點(diǎn)和右頂點(diǎn)分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)P是雙曲線右支上的一點(diǎn),且以點(diǎn)P及焦點(diǎn)為定點(diǎn)的三角形的面積為4,則點(diǎn)P的坐標(biāo)是_____________14.已知正方形的邊長(zhǎng)為2,對(duì)部分以為軸進(jìn)行翻折,翻折到,使二面角的平面角為直二面角,則___________.15.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.16.雙曲線的左焦點(diǎn)到直線的距離為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(diǎn)(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.18.(12分)已知橢圓,焦點(diǎn),A,B是上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),的周長(zhǎng)的最小值為(1)求的方程;(2)直線FA與交于點(diǎn)M(異于點(diǎn)A),直線FB與交于點(diǎn)N(異于點(diǎn)B),證明:直線MN過定點(diǎn)19.(12分)如圖,在平面直角標(biāo)系中,已知n個(gè)圓與x軸和線均相切,且任意相鄰的兩個(gè)圓外切,其中圓.(1)求數(shù)列通項(xiàng)公式;(2)記n個(gè)圓的面積之和為S,求證:.20.(12分)如圖,幾何體中,平面,,,,E是中點(diǎn),二面角的平面角為.(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知圓關(guān)于直線對(duì)稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.22.(10分)在棱長(zhǎng)為的正方體中,、分別為線段、的中點(diǎn).(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題得對(duì)任意恒成立,求出的最大值即可.【詳解】解:由題得對(duì)任意恒成立,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)所以故選:A2、D【解析】根據(jù)命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識(shí)一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構(gòu)成關(guān)系,可知A正確;B,當(dāng)a=2>1時(shí),函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當(dāng)函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時(shí),a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點(diǎn),例如:函數(shù),則=0,即x=0就不是極值點(diǎn),所以“若為的極值點(diǎn),則”的逆命題為假命題,故選D.【點(diǎn)睛】本題主要考查命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識(shí),需牢記并靈活運(yùn)用相關(guān)知識(shí).3、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計(jì)算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點(diǎn)O到直線l的距離,因此,,解得,所以實(shí)數(shù)m等于.故選:A4、C【解析】令即得解.【詳解】解:令得.故選:C5、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D6、C【解析】首先寫出展開式的通項(xiàng)公式,然后結(jié)合通項(xiàng)公式確定的系數(shù)即可.【詳解】展開式的通項(xiàng)公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項(xiàng)式定理的核心是通項(xiàng)公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項(xiàng))和通項(xiàng)公式,建立方程來確定指數(shù)(求解時(shí)要注意二項(xiàng)式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項(xiàng)指數(shù)為零、有理項(xiàng)指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項(xiàng)7、C【解析】根據(jù)等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】,故選:C8、B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過時(shí),縱截距最大,最大.故選:B9、C【解析】求出兩圓的圓心和半徑,根據(jù)圓心距與半徑和與差的關(guān)系,判斷圓與圓的位置關(guān)系【詳解】圓:的圓心為,半徑,圓:,即,圓心,半徑,兩圓的圓心距,顯然,即,所以圓與圓相交.故選:C10、A【解析】作垂直準(zhǔn)線于點(diǎn),根據(jù)拋物線的定義,得到,當(dāng)三點(diǎn)共線時(shí),的值最小,進(jìn)而可得出結(jié)果.【詳解】如圖,作垂直準(zhǔn)線于點(diǎn),由題意可得,顯然,當(dāng)三點(diǎn)共線時(shí),的值最??;因?yàn)椋?,?zhǔn)線,所以當(dāng)三點(diǎn)共線時(shí),,所以.故選A【點(diǎn)睛】本題主要考查拋物線上任一點(diǎn)到兩定點(diǎn)距離的和的最值問題,熟記拋物線的定義與性質(zhì)即可,屬于??碱}型.11、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒有次品“故選:C12、B【解析】根據(jù)橢圓方程及其性質(zhì)有,求解即可.【詳解】由題設(shè),,整理得,可得.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點(diǎn)坐標(biāo)【詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點(diǎn)坐標(biāo)為故答案為:14、-2【解析】根據(jù),則,根據(jù)條件求得向量夾角即可求得結(jié)果.【詳解】由題知,,取的中點(diǎn)O,連接,如圖所示,則,又二面角的平面角為直二面角,則,又,則,為等邊三角形,從而,則,故答案為:-215、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.16、【解析】根據(jù)雙曲線方程求得左焦點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的方程為,設(shè)其左焦點(diǎn)的坐標(biāo)為,故可得,解得,故左焦點(diǎn)的坐標(biāo)為,則其到直線的距離.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標(biāo)系.,,設(shè)平面的法向量為,則,故可設(shè).由于,所以平面.(2)直線與平面所成角為,則.18、(1)(2)證明見解析【解析】(1)設(shè)橢圓的左焦點(diǎn)為,根據(jù)橢圓的對(duì)稱性可得,則三角形的周長(zhǎng)為,再設(shè)根據(jù)二次函數(shù)的性質(zhì)得到,即可求出的周長(zhǎng)的最小值為,從而得到,再根據(jù),即可求出、,從而求出橢圓方程;(2)設(shè)直線MN的方程,,,,聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,再設(shè)直線的方程、,直線的方程、,聯(lián)立直線方程,消元列出韋達(dá)定理,即可表示,即可得到,整理得,再代入,,即可得到,從而求出,即可得解;【小問1詳解】設(shè)橢圓的左焦點(diǎn)為,則由對(duì)稱性,,所以的周長(zhǎng)為設(shè),則,當(dāng)A,B是橢圓的上下頂點(diǎn)時(shí),的周長(zhǎng)取得最小,所以,即,又橢圓焦點(diǎn),所以,所以,所以,解得,,所以橢圓的方程為.【小問2詳解】解:當(dāng)A,B為橢圓左右頂點(diǎn)時(shí),直線MN與x軸重合;當(dāng)A,B為橢圓上下頂點(diǎn)時(shí),可得直線MN的方程為;設(shè)直線MN的方程,,,,由得,,,,設(shè)直線的方程,其中,,,由得,,,,設(shè)直線的方程,其中,,由得,,,所以,所以,所以,則,即,代入,,得,整理得,又所以,直線MN的方程為,綜上直線MN過定點(diǎn)19、(1).(2)證明見解析.【解析】(1)由已知得,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計(jì)算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設(shè)圓分別切軸于點(diǎn),過點(diǎn)作,垂足為.在中,所以即化簡(jiǎn)得,變形得,所以是以為首項(xiàng),為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.20、(1)證明見解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標(biāo)原點(diǎn),,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,求平面的一個(gè)法向量與的方向向量,利用向量法可求直線與平面所成角的正弦值【小問1詳解】證明:取中點(diǎn),又是中點(diǎn),,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點(diǎn),,平面,,又,平面,平面.【小問2詳解】解:以為坐標(biāo)原點(diǎn),,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設(shè)平面的一個(gè)法向量為,,,則,令,則,,平面的一個(gè)法向量為,,,設(shè)直線與平面所成角為,則,直線與平面所成角的正弦值為21、(1)(2)或【解析】(1)根據(jù)題意得到等量關(guān)系,求出,,進(jìn)而求出圓的方程;(2)結(jié)合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進(jìn)而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技健康遠(yuǎn)程監(jiān)測(cè)兒童季節(jié)性鈣質(zhì)需求
- 2025年度生態(tài)園林景觀設(shè)計(jì)委托合同范本4篇
- 2025版醫(yī)療設(shè)備采購(gòu)?fù)稑?biāo)文件人員配置及服務(wù)協(xié)議3篇
- 2025年魚塘租賃與漁業(yè)科技創(chuàng)新合作框架協(xié)議2篇
- 2025版苗圃基地苗木種植與生物防治合作合同4篇
- 二零二五年度機(jī)關(guān)單位食堂社會(huì)化運(yùn)營(yíng)合同8篇
- 二零二四年度養(yǎng)老院物業(yè)服務(wù)合同附加生活照料服務(wù)協(xié)議3篇
- 二零二五年度醫(yī)院樓梯口無障礙改造工程合同樣本4篇
- 二零二四年在線辦公系統(tǒng)軟件產(chǎn)品合作開發(fā)協(xié)議3篇
- 二零二五年度食品級(jí)儲(chǔ)藏室租賃及質(zhì)量檢測(cè)合同4篇
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合試卷(含答案)
- 收養(yǎng)能力評(píng)分表
- 山東省桓臺(tái)第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國(guó)保守國(guó)家秘密法實(shí)施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國(guó)統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí) CCAA年度確認(rèn) 試題與答案
- 皮膚儲(chǔ)存新技術(shù)及臨床應(yīng)用
- 外研版七年級(jí)英語上冊(cè)《閱讀理解》專項(xiàng)練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
評(píng)論
0/150
提交評(píng)論