2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第1頁
2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第2頁
2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第3頁
2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第4頁
2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海大學市北附屬中學高二數(shù)學第一學期期末教學質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.2.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.33.過拋物線的焦點作直線l,交拋物線與A、B兩點,若線段中點的縱坐標為3,則等于()A.10 B.8C.6 D.44.設,若,則()A. B.C. D.5.不等式的解集為()A. B.C.或 D.或6.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.7.某地政府為落實疫情防控常態(tài)化,不定時從當?shù)?80名公務員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務員按001到780進行編號,若018號被抽中,則下列編號也被抽中的是()A.076 B.122C.390 D.5228.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.9.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為10.若存在,使得不等式成立,則實數(shù)k的取值范圍為()A. B.C. D.11.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.7612.某企業(yè)甲車間有200人,乙車間有300人,現(xiàn)用分層抽樣的方法在這兩個車間中抽取25人進行技能考核,則從甲車間抽取的人數(shù)應為()A.5 B.10C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則______14.已知點,是橢圓內的兩個點,M是橢圓上的動點,則的最大值為______15.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AA1,BB1的中點,G為棱A1B1上的一點,且A1G=(0<<2),則點G到平面D1EF的距離為____.16.有一組數(shù)據(jù):,其平均數(shù)是,則其方差是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求的極值;(2)討論的單調性18.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍19.(12分)設函數(shù)(1)若在處取得極值,求a的值;(2)若在上單調遞減,求a的取值范圍20.(12分)如圖1,已知矩形ABCD,,,E,F(xiàn)分別為AB,CD的中點,將ABCD卷成一個圓柱,使得BC與AD重合(如圖2),MNGH為圓柱的軸截面,且平面平面MNGH,NG與曲線DE交于點P(1)證明:平面平面MNGH;(2)判斷平面PAE與平面PDH夾角與的大小,并說明理由21.(12分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標;(3)設直線交拋物線于,兩點,試求的最小值.22.(10分)已知動點M到點F(0,2)的距離,與點M到直線l:y=﹣2的距離相等.(1)求動點M的軌跡方程;(2)若過點F且斜率為1的直線與動點M的軌跡交于A,B兩點,求線段AB的長度.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.2、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過點A時,的縱截距最小,最大,則,所以的最大值為1.故選:B3、B【解析】根據(jù)拋物線的定義求解【詳解】拋物線的焦點為,準線方程為,設,則,所以,故選:B4、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因為,且,所以.所以,,所以.故選:B5、A【解析】先將分式不等式轉化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A6、D【解析】焦點三角形問題,可結合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關系,從而得到關系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關系7、B【解析】根據(jù)系統(tǒng)抽樣的特點,寫出組數(shù)與對應抽取編號的關系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設第組抽取的編號為,故可設,又第一組抽中號,故可得,解得故,當時,.故選:.8、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C9、C【解析】讀懂莖葉圖,分別計算出眾數(shù)、中位數(shù)、方差,然后對各選項進行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【點睛】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計算出眾數(shù)、中位數(shù)、方差,即可對各選項進行判斷,較為基礎10、C【解析】根據(jù)題意和一元二次不等式能成立可得對于,成立,令,利用導數(shù)討論函數(shù)的單調性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當,單調遞增,當,單調遞減,又,所以f(x)>-3,所以.故選:C11、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A12、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車間抽取的人數(shù)為人故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導數(shù)的定義求解即可【詳解】由,得,所以,故答案為:14、##【解析】結合橢圓的定義求得正確答案.【詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點,設左焦點為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:15、【解析】先證明A1B1∥平面D1EF,進而將問題轉化為求點A1到平面D1EF的距離,然后建立空間直角坐標系,通過空間向量的運算求得答案.【詳解】由題意得A1B1∥EF,A1B1?平面D1EF,EF?平面D1EF,所以A1B1∥平面D1EF,則點G到平面D1EF的距離等于點A1到平面D1EF的距離.以D為坐標原點,DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標系D-xyz,則D1(0,0,2),E(2,0,1),F(xiàn)(2,2,1),A1(2,0,2),所以,,.設平面D1EF的法向量為,則,令x=1,則y=0,z=2,所以平面D1EF的一個法向量.點A1到平面D1EF的距離==,即點G到平面D1EF的距離為.故答案為:.16、2【解析】先按照平均數(shù)算出a,再按照方差的定義計算即可?!驹斀狻俊?,所以,方差,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極小值為,無極大值(2)答案見解析【解析】(1)求出導函數(shù),由得增區(qū)間,得減區(qū)間,從而得極值;(2)求出導函數(shù),分類討論確定和解得單調性小問1詳解】當時,,(x>0)則令,得,得,得,所以的單調遞減區(qū)間為;單調遞增區(qū)間為.所以的極小值為f(2)=,無極大值.【小問2詳解】令則當時,在上單調遞減.當時,,得,,得;,得在上單調遞減,在上單調遞增,綜上所述,當時,在上單調遞減.當時,在上單調遞減,在上單調遞增.18、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標、頂點坐標和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解能力,屬基礎題.19、(1)(2)【解析】(1)對求導,再根據(jù)題意有,據(jù)此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區(qū)間上的最小值即可得出結論.【詳解】(1),則,因為在處取得極值,所以,解得,經(jīng)檢驗,當時,在處取得極值;(2)因為在上單調遞減,所以對恒成立,則對恒成立,∵當時,,∴,即a的取值范圍為.【點睛】本題主要考查利用函數(shù)的單調性與極值求參,需要學生對相關基礎知識牢固掌握且靈活運用.20、(1)證明見解析(2)平面PAE與平面PDH夾角大于,理由見解析【解析】(1)由面面垂直證明,然后得證平面MNGH后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求出二面角的余弦可得結論【小問1詳解】如圖O,為圓柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因為平面PAE,所以平面平面MNGH;【小問2詳解】因為,所以得,如圖,以為坐標原點,以,,所在直線為x,y,z軸建立空間直角坐標系,則可知,,,,,則,,,,設平面AEP的法向量為,則,令,得,設平面DHP的法向量為,則,即令,得,,設平面PAE與平面PDH夾角為,則,,因為,即,所以平面PAE與平面PDH夾角大于21、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標,從而可知拋物線的焦點坐標,進而可得的值;(2)首先設出直線的方程,聯(lián)立直線與拋物線的方程,得到,坐標,令,可得直線過點,再證明當,,,三點共線即可;(3)設出的直線方程,聯(lián)立直線與拋物線的方程,利用韋達定理找出根的關系,再利用兩點間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點坐標為,由于拋物線的焦點也是橢圓的一個焦點,故,即,;小問2詳解】由(1)知,拋物線的方程為,設,,,,由題意,直線的斜率存在且設直線的方程為,代入可得,則,故,故的中點坐標為,由,設直線的方程為,代入可得,則,故,可得的中點坐標為,令得,此時,故直線過點,當時,,所以,,,三點共線,所以直線過定點.【小問3詳解】設,由題意直線的斜率存在,設直線的方程為,代入可得,則,,,故,當即直線垂直軸時,取得最小值.22、(1)x2=8y(2)16【解析】小問1:由拋物線的定義可求得動點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論