海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

海南省東方市民族中學(xué)2025屆高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,如果,則角A. B.C. D.2.已知且,則()A.有最小值 B.有最大值C.有最小值 D.有最大值3.給出下列四個命題:①若,則對任意的非零向量,都有②若,,則③若,,則④對任意向量都有其中正確的命題個數(shù)是()A.3 B.2C.1 D.04.函數(shù)在上的部分圖象如圖所示,則的值為A. B.C. D.5.下列四組函數(shù)中,表示同一函數(shù)的是()A. B.C D.6.一個正三棱柱的三視圖如圖所示,則這個三棱柱的表面積為()A. B.C. D.7.命題“,”的否定是()A, B.,C., D.,8.已知扇形的圓心角為,半徑為10,則扇形的弧長為()A. B.1C.2 D.49.已知向量,若與垂直,則的值等于A. B.C.6 D.210.函數(shù)的部分圖象如圖所示,將函數(shù)的圖象向左平移個單位長度后得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的最小正周期為C.函數(shù)的圖象的對稱軸為直線D.函數(shù)的單調(diào)遞增區(qū)間為二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)為奇函數(shù),且x>0時,f(x)=+1,則當(dāng)x<0時,f(x)=________.12.設(shè)函數(shù),若其定義域內(nèi)不存在實數(shù),使得,則的取值范圍是______13.已知兩定點,,如果動點滿足,則點的軌跡所包圍的圖形的面積等于__________14.函數(shù)的遞增區(qū)間是__________________15.已知定義在R上的函數(shù)滿足,且當(dāng)時,,若對任都有,則m的取值范圍是_________16.已知,則_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的部分圖象如圖所示(1)求函數(shù)的解析式:(2)將函數(shù)的圖象上所有的點向右平移個單位,再將所得圖象上每一個點的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到函數(shù)的圖象①當(dāng)時,求函數(shù)的值域;②若方程在上有三個不相等的實數(shù)根,求的值18.已知點及圓.(1)若直線過點且與圓心的距離為1,求直線的方程;(2)設(shè)過點的直線與圓交于兩點,當(dāng)時,求以線段為直徑的圓的方程;(3)設(shè)直線與圓交于兩點,是否存在實數(shù),使得過點的直線垂直平分弦?若存在,求出實數(shù)的值;若不存在,請說明理由19.已知為的三個內(nèi)角,向量與向量共線,且角為銳角.(1)求角的大?。唬?)求函數(shù)的值域.20.已知向量,,(1)若,求向量與的夾角;(2)若函數(shù).求當(dāng)時函數(shù)的值域21.如圖,已知正三棱柱的底面邊長為2,側(cè)棱長為,點E在側(cè)棱上,點F在側(cè)棱上,且(1)求證:;(2)求二面角的大小

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由特殊角的三角函數(shù)值結(jié)合在△ABC中,可求得A的值;【詳解】,又∵A∈(0,π),∴故選C.【點睛】本題考查了特殊角的三角函數(shù)值及三角形中角的范圍,屬于基礎(chǔ)題.2、A【解析】根據(jù),變形為,再利用不等式的基本性質(zhì)得到,進(jìn)而得到,然后由,利用基本不等式求解.【詳解】因為,所以,所以,所以,所以,所以,當(dāng)且僅當(dāng)時取等號,故選:A.【點睛】思路點睛:本題思路是利用分離常數(shù)法轉(zhuǎn)化為,再由,利用不等式的性質(zhì)構(gòu)造,再利用基本不等式求解.3、D【解析】對于①,當(dāng)兩向量垂直時,才有;對于②,當(dāng)兩向量垂直時,有,但不一定成立;對于③,當(dāng),時,可以是任意向量;對于④,當(dāng)向量都為零向量時,【詳解】解:對于①,因為,,所以當(dāng)兩向量垂直時,才有,所以①錯誤;對于②,因為,,所以或,所以②錯誤;對于③,因為,所以,所以可以是任意向量,不一定是相等向量,所以③錯誤;對于④,當(dāng)時,,所以④錯誤,故選:D4、C【解析】由圖象最值和周期可求得和,代入可求得,從而得到函數(shù)解析式,代入可求得結(jié)果.【詳解】由圖象可得:,代入可得:本題正確選項:【點睛】本題考查三角函數(shù)值的求解,關(guān)鍵是能夠根據(jù)正弦函數(shù)的圖象求解出函數(shù)的解析式.5、A【解析】求得每個選項中函數(shù)的定義域,結(jié)合對應(yīng)關(guān)系是否相等,即可容易判斷.【詳解】對于A:,,定義域均為,兩個函數(shù)的定義域和對應(yīng)關(guān)系都相同,表示同一函數(shù);對于B:的定義域為R,的定義域為,兩個函數(shù)的定義域不同,不是同一函數(shù);對于:的定義域為,的定義域為,兩個函數(shù)的定義域不同,不是同一函數(shù);對于D:的定義域為,的定義域為或,兩個函數(shù)的定義域不同,不是同一函數(shù).故選:A.【點睛】本題考查函數(shù)相等的判斷,屬簡單題;注意函數(shù)定義域的求解.6、D【解析】由三視圖可知,該正三棱柱的底面是邊長為2cm的正三角形,高為2cm,根據(jù)面積公式計算可得結(jié)果.【詳解】正三棱柱如圖,有,,三棱柱的表面積為.故選:D【點睛】本題考查了根據(jù)三視圖求表面積,考查了正三棱柱結(jié)構(gòu)特征,屬于基礎(chǔ)題.7、D【解析】利用全稱量詞命題的否定變換形式即可求解.【詳解】的否定是,的否定是,故“,”的否定是“,”,故選:D8、D【解析】由扇形的弧長公式運算可得解.【詳解】解:因為扇形的圓心角為,半徑為10,所以由弧長公式得:扇形的弧長為故選:D9、B【解析】,所以,則,故選B10、D【解析】根據(jù)圖象得到函數(shù)解析式,將函數(shù)的圖象向左平移個單位長度后得到的圖象,可得解析式,分別根據(jù)正弦函數(shù)的奇偶性、單調(diào)性、周期性與對稱性,對選項中的結(jié)論判斷,從而可得結(jié)論.【詳解】由圖象可知,,∴,則.將點的坐標(biāo)代入中,整理得,∴,即;,∴,∴.∵將函數(shù)的圖象向左平移個單位長度后得到的圖象,∴.,∴既不是奇函數(shù)也不是偶函數(shù),故A錯誤;∴的最小正周期,故B不正確.令,解得,則函數(shù)圖像的對稱軸為直線.故C錯誤;由,可得,∴函數(shù)的單調(diào)遞增區(qū)間為.故D正確;故選:D.【點睛】關(guān)鍵點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),熟記正弦函數(shù)的奇偶性、單調(diào)區(qū)間、最小正周期與對稱軸是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】當(dāng)x<0時,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.12、【解析】按的取值范圍分類討論.【詳解】當(dāng)時,定義域,,滿足要求;當(dāng)時,定義域,取,,時,,不滿足要求;當(dāng)時,定義域,,,滿足要求;當(dāng)時,定義域,取,,時,,不滿足要求;綜上:故答案為:【點睛】關(guān)鍵點睛:由參數(shù)變化引起的分類討論,可根據(jù)題設(shè)按參數(shù)在不同區(qū)間,對應(yīng)函數(shù)的變化,找到參數(shù)的取值范圍.13、4π【解析】設(shè)點的坐標(biāo)為(則,即(以點的軌跡是以為圓心,2為半徑的圓,所以點的軌跡所包圍的圖形的面積等于4π.即答案為4π14、【解析】由已知有,解得,即函數(shù)的定義域為,又是開口向下的二次函數(shù),對稱軸,所以的單調(diào)遞增區(qū)間為,又因為函數(shù)以2為底的對數(shù)型函數(shù),是增函數(shù),所以函數(shù)的遞增區(qū)間為點睛:本題主要考查復(fù)合函數(shù)的單調(diào)區(qū)間,屬于易錯題.在求對數(shù)型函數(shù)的單調(diào)區(qū)間時,一定要注意定義域15、,【解析】作出當(dāng),時,的圖象,將其圖象分別向左、向右平移個單位(橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼幕?倍),得到函數(shù)的圖象,令,求得的最大值,可得所求范圍【詳解】解:因為滿足,即;又由,可得,畫出當(dāng),時,的圖象,將在,的圖象向右平移個單位(橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍),再向左平移個單位(橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼谋叮纱说玫胶瘮?shù)的圖象如圖:當(dāng),時,,,,又,所以,令,由圖像可得,則,解得,所以當(dāng)時,滿足對任意的,,都有,故的范圍為,故答案為:,16、【解析】利用交集的運算解題即可.【詳解】交集即為共同的部分,即.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②.【解析】(1)由圖象得A、B、,再代入點,求解可得函數(shù)的解析式;(2)①由已知得,由求得,繼而求得函數(shù)的值域;②令,,做出函數(shù)的圖象,設(shè)有三個不同的實數(shù)根,有,,繼而得,由此可得答案.【小問1詳解】解:由圖示得:,又,所以,所以,所以,又因為過點,所以,即,所以,解得,又,所以,所以;【小問2詳解】解①:由已知得,當(dāng)時,,所以,所以,所以,所以函數(shù)的值域為;②當(dāng)時,,令,則,令,則函數(shù)的圖象如下圖所示,且,,,由圖象得有三個不同的實數(shù)根,則,,所以,即,所以,所以,故.18、(1)或;(2);(3)不存在.【解析】(1)設(shè)出直線方程,結(jié)合點到直線距離公式,計算參數(shù),即可.(2)證明得到點P為MN的中點,建立圓方程,即可.(3)將直線方程代入圓方程,結(jié)合交點個數(shù),計算a的范圍,計算直線的斜率,計算a的值,即可【詳解】(1)直線斜率存在時,設(shè)直線的斜率為,則方程為,即.又圓的圓心為,半徑,由,解得.所以直線方程為,即.當(dāng)?shù)男甭什淮嬖跁r,的方程為,經(jīng)驗證也滿足條件即直線的方程為或.(2)由于,而弦心距,所以.所以恰為的中點故以為直徑的圓的方程為.(3)把直線代入圓的方程,消去,整理得.由于直線交圓于兩點,故,即,解得.則實數(shù)的取值范圍是設(shè)符合條件的實數(shù)存在,由于垂直平分弦,故圓心必在上.所以的斜率,而,所以.由于,故不存在實數(shù),使得過點的直線垂直平分弦.【點睛】考查了點到直線距離公式,考查了圓方程計算方法,考查了直線斜率計算方法,難度偏難19、(1);(2).【解析】(1)根據(jù)平行向量的坐標(biāo)關(guān)系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,這樣即可解出tan2A,結(jié)合A為銳角,即可求出A;(2)由B+C便得C,從而得到,利用二倍角的余弦公式及兩角差的正余弦公式即可化簡原函數(shù)y=1+sin(B),由前面知0,從而可得到B的范圍,結(jié)合正弦函數(shù)的圖象即可得到的范圍,即可得出原函數(shù)的值域【詳解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且為銳角,則.(2)由(1)知,,即,=,所以,=,且,則,所以,則,即函數(shù)的值域為.【點睛】本題考查平行向量的坐標(biāo)的關(guān)系,同角基本關(guān)系及向量數(shù)量積的計算公式,考查了利用正弦函數(shù)的圖象求最值及二倍角的余弦公式,兩角差的正余弦公式等,屬于綜合題20、(1)(2)【解析】(1)首先求出的坐標(biāo),再根據(jù)數(shù)量積、向量夾角的坐標(biāo)公式計算可得;(2)根據(jù)數(shù)量積的坐標(biāo)公式、二倍角公式以及輔助角公式化簡函數(shù)解析式,再根據(jù)的取值范圍,求出的范圍,最后根據(jù)正弦函數(shù)的性質(zhì)計算可得;【小問1詳解】解:因為,當(dāng)時,,又.所以,,,所以,因為,所以向量與的夾角為.【小問2詳解】解:因為,,所以,當(dāng)時,,所以,則因此函數(shù)在時的值域為21、(1)證明見解析;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論